Doctorat (2013)
Aujourd’hui
Maintenant chercheur post-doctoral en génie des matériaux à Carleton University, dans le groupe de Ron Miller
Activités de recherche
Il s’intéresse aux barrières d’activation dans les réactions d’oxydation des huiles.
Liens
Articles en collaboration
-
N. Mousseau, P. Brommer, J. - F. Joly, L. K. Béland, F. El-Mellouhi, G. K. N'Tsouaglo, et al., Following atomistic kinetics on experimental timescales with the kinetic Activation-Relaxation Technique, Computational Materials Science 100, 111-123 (2015).
-
M. Trochet, L. K. Béland, P. Brommer, J. - F. Joly, N. Mousseau, Diffusion of point defects in crystalline silicon using the kinetic ART method, Phys. Rev. B 91, 224106 (2015).
-
G. K. N'Tsouaglo, L. K. Béland, J. - F. Joly, P. Brommer, N. Mousseau, P. Pochet, Probing potential energy surface exploration strategies for complex systems, J. Chem. Theory Comput. 11, 1970-1977 (2015).Résumé : The efficiency of minimum-energy configuration searching algorithms is closely linked to the energy landscape structure of complex systems. Here we characterize this structure by following the time evolution of two systems, vacancy aggregation in Fe and energy relaxation in ion-bombarded c-Si, using the kinetic Activation-Relaxation Technique (k-ART), an off-lattice kinetic Monte Carlo (KMC) method, and the well-known Bell-Evans-Polanyi (BEP) principle. We also compare the efficiency of two methods for handling non-diffusive flickering states -- an exact solution and a Tabu-like approach that blocks already visited states. Comparing these various simulations allow us to confirm that the BEP principle does not hold for complex system since forward and reverse energy barriers are completely uncorrelated. This means that following the lowest available energy barrier, even after removing the flickering states, leads to rapid trapping: relaxing complex systems requires crossing high-energy barriers in order to access new energy basins, in agreement with the recently proposed replenish-and-relax model [Béland et al., PRL 111, 105502 (2013)] This can be done by forcing the system through these barriers with Tabu-like methods. Interestingly, we find that following the fundamental kinetics of a system, though standard KMC approach, is at least as efficient as these brute-force methods while providing the correct kinetics information.
-
P. Brommer, L. K. Béland, J. - F. Joly, N. Mousseau, Understanding long-time vacancy aggregation in iron: A kinetic activation-relaxation technique study, Phys. Rev. B 90, 134109 (2014).
-
J. - F. Joly, L. K. Béland, P. Brommer, N. Mousseau, Contribution of vacancies to relaxation in amorphous materials: A kinetic activation-relaxation technique study, Physical Review B 87, 144204 (2013).Résumé : The nature of structural relaxation in disordered systems such as amorphous silicon (a-Si) remains a fundamental issue in our attempts at understanding these materials. While a number of experiments suggest that mechanisms similar to those observed in crystals, such as vacancies, could dominate the relaxation, theoretical arguments point rather to the possibility of more diverse pathways. Using the kinetic activation-relaxation technique, an off-lattice kinetic Monte Carlo method with on-the-fly catalog construction, we resolve this question by following 1000 independent vacancies in a well-relaxed a-Si model at 300 K over a timescale of up to one second. Less than one percent of these survive over this period of time and none diffuse more than once, showing that relaxation and diffusion mechanisms in disordered systems are fundamentally different from those in the crystal.
-
L. K. Béland, Y. Anahory, D. Smeets, M. Guihard, P. Brommer, J. - F. Joly, et al., Replenish and Relax: Explaining Logarithmic Annealing in Ion-Implanted c-Si, Physical Review Letters 111, 105502 (2013).Résumé : We study ion-damaged crystalline silicon by combining nanocalorimetric experiments with an off-lattice kinetic Monte Carlo simulation to identify the atomistic mechanisms responsible for the structural relaxation over long time scales. We relate the logarithmic relaxation, observed in a number of disordered systems, with heat-release measurements. The microscopic mechanism associated with this logarithmic relaxation can be described as a two-step replenish and relax process. As the system relaxes, it reaches deeper energy states with logarithmically growing barriers that need to be unlocked to replenish the heat-releasing events leading to lower-energy configurations.
-
N. Mousseau, L. K. Béland, P. Brommer, J. - F. Joly, F. El-Mellouhi, E. Machado-Charry, et al., The Activation-Relaxation Technique: ART Nouveau and Kinetic ART, Journal of Atomic, Molecular, and Optical Physics 2012, 925278 (2012).Résumé : The evolution of many systems is dominated by rare activated events that occur on timescale ranging from nanoseconds to the hour or more. For such systems, simulations must leave aside the full thermal description to focus specifically on mechanisms that generate a configurational change. We present here the activation relaxation technique (ART), an open-ended saddle point search algorithm, and a series of recent improvements to ART nouveau and kinetic ART, an ART-based on-the-fly off-lattice self-learning kinetic Monte Carlo method.
-
J. - F. Joly, L. K. Béland, P. Brommer, F. El-Mellouhi, N. Mousseau, Optimization of the Kinetic Activation-Relaxation Technique, an off-lattice and self-learning kinetic Monte-Carlo method, Journal of Physics: Conference Series 341, 012007 (2012).Résumé : We present two major optimizations for the kinetic Activation-Relaxation Technique (k-ART), an off-lattice self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search THAT has been successfully applied to study a number of semiconducting and metallic systems. K-ART is parallelized in a non-trivial way: A master process uses several worker processes to perform independent event searches for possible events, while all bookkeeping and the actual simulation is performed by the master process. Depending on the complexity of the system studied, the parallelization scales well for tens to more than one hundred processes. For dealing with large systems, we present a near order 1 implementation. Techniques such as Verlet lists, cell decomposition and partial force calculations are implemented, and the CPU time per time step scales sublinearly with the number of particles, providing an efficient use of computational resources.
-
L. K. Béland, P. Brommer, F. El-Mellouhi, J. - F. Joly, N. Mousseau, Kinetic activation-relaxation technique, Physical Review E 84, 046704 (2011).Résumé : We present a detailed description of the kinetic activation-relaxation technique (k-ART), an off-lattice, self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search. Combining a topological classification for local environments and event generation with ART nouveau, an efficient unbiased sampling method for finding transition states, k-ART can be applied to complex materials with atoms in off-lattice positions or with elastic deformations that cannot be handled with standard KMC approaches. In addition to presenting the various elements of the algorithm, we demonstrate the general character of k-ART by applying the algorithm to three challenging systems: self-defect annihilation in c-Si (crystalline silicon), self-interstitial diffusion in Fe, and structural relaxation in a-Si (amorphous silicon).
-
J. - F. Joly, N. Mousseau, S. Roorda, Identification of a regime change in the microscopic relaxation of ion-implanted amorphous silicon using the kinetic ART method, Physical Review B (sans date).