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ABSTRACT: The efficiency of minimum-energy configura-
tion searching algorithms is closely linked to the energy
landscape structure of complex systems, yet these algorithms
often include a number of steps of which the effect is not
always clear. Decoupling these steps and their impacts can
allow us to better understand both their role and the nature of
complex energy landscape. Here, we consider a family of
minimum-energy algorithms based, directly or indirectly, on
the well-known Bell−Evans−Polanyi (BEP) principle. Com-
paring trajectories generated with BEP-based algorithms to
kinetically correct off-lattice kinetic Monte Carlo schemes
allow us to confirm that the BEP principle does not hold for
complex systems since forward and reverse energy barriers are
completely uncorrelated. As would be expected, following the
lowest available energy barrier leads to rapid trapping. This is
why BEP-based methods require also a direct handling of
visited basins or barriers. Comparing the efficiency of these
methods with a thermodynamical handling of low-energy barriers, we show that most of the efficiency of the BEP-like methods
lie first and foremost in the basin management rather than in the BEP-like step.

1. INTRODUCTION

Finding pathways toward global minima on the energy
landscape of complex materials is a major challenge in many
fields.1 In the last decades, we have observed the multiplication
of new approaches for accelerating the exploration of the
energy landscape space while still attempting to follow
physically-relevant pathways (see, for example, refs 2−6).
Because the complexity of energy landscapes increases at

least exponentially with system size,7,8 many efforts have gone
into identifying local features that could be used to bias the
search toward global low-energy structures. Such knowledge
would allow one to generate physically relevant and efficient
moves much more quickly, reducing the size of the effective
landscape and increasing the probability of constructing
pathways leading to global energy minima.
Among the various propositions, a number of groups have

suggested, either directly or indirectly, that the Bell−Evans−
Polanyi (BEP) principle,9−11 developed in physical chemistry,

could also apply to more complex systems.5,7,12,13 The BEP
principle states that the lowest-energy barriers surrounding a
local minimum lead to deeper low-energy states; following
systematically the lowest-energy barrier out of a local minimum
should therefore rapidly lead to deep minima. It is closely
connected to the methods that follow the lowest vibrational
normal mode(s) to establish folding pathways and find native
states of proteins and other molecules.14 While the BEP
principle has been used mostly for molecules,15 its application
to bulk matter is relatively new.5,12

Indeed, a simple application of the BEP principle inevitably
leads to trapping since the trajectory is fully determined by the
local structure of the energy landscape: once at the bottom of a
local energy basin, the BEP principle does not allow any escape
route into a new basin. This is why recently proposed
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algorithms have coupled the BEP approach to basin-handling
algorithms that force the system out of local basins, ensuring a
more complete sampling of the landscape. In fact, most energy
landscape exploration methods include generally an additional
step for handling flickers, i.e. nondiffusive states separated by
low-energy barriers that increase the energy landscape
complexity without contributing to the system evolution, and
frequently visited states. A number of approaches have been
proposed for handling these states, including the exact
treatment of their kinetics6,16−20 and Tabu-like methods,
approaches that block already visited states or transitions,
facilitating the overall phase-space sampling.21−24

Because of BEP’s simplicity and its fundamental relation to
energy landscape, it is useful to try to disentangle the
contribution of the various elements composing recently
proposed BEP-based algorithms such as the autonomous
basin climbing (ABC)13 and the minima-hopping5 methods.
In this article, we assess these methods by comparing their
application with kinetic Monte Carlo (KMC), an algorithm
known to provide the correct kinetics.25 This comparison
allows us to better understand how these methods work and,
more importantly, what the nature of the energy landscape of
complex bulk systems is. To do so, we use the kinetic
Activation-Relaxation Technique (k-ART), an off-lattice KMC
method with on-the-fly catalog building, that handles both
disordered systems and long-ranges deformations directly as
the reference simulation package, since it provides physically
accurate trajectories with which to compare the efficiency of the
BEP-based exploration algorithms.6,23

In the following section we describe the implementation of
the various methods. We then present results from tests run on
two systems: vacancy aggregation in iron and relaxation of an
ion-implanted box of crystalline silicon. The significance of
these results is presented in the discussion section. When
handling flicker states correctly, we find that crossing high-
energy barriers is essential to open new low-energy pathways,
by moving into unvisited energy basins that can lead to new
low-energy structures. On the other hand, while Tabu does not
preserve the correct kinetics, it significantly raises the efficiency
of BEP but does not significantly accelerate the configurational
space sampling as compared with standard KMC with flicker-
handling.

2. METHODOLOGY

The comparison presented in this paper is done, first, between
two sampling algorithms, kinetic Monte Carlo and the BEP
principle. For each of these methods, we apply two different
approaches for handling low-energy barriers. All these are run
using the kinetic Activation-Relaxation Technique (k-ART)
package as a base.6,23 In this section, we first describe the k-
ART package and then each algorithm separately.
2.1. The Kinetic Activation-Relaxation Technique. The

kinetic Activation-Relaxation Technique (k-ART) is an off-
lattice kinetic Monte Carlo algorithm (KMC)25 that lifts many
of the technical restrictions preventing its application to
complex materials.6,23 Traditionally, KMC uses a fixed,
preconstructed event catalog to compute the rate of escape
from a local minimum and brings forward the simulation clock
according to a Poisson distribution.25,26 This choice limits the
atomic motion to discrete states, which are generally crystalline
positions, preventing its application to disordered or defective
materials, alloys, and, in many cases, semiconductors and

leaving aside much of the long-range elastic effects on energy
barriers and kinetics.
While k-ART is described in detail in refs 6, 27, and 28, it is

useful to provide here a short description of the algorithm.
Updating the system in k-ART can be described as a four-step
process:
1. After a move, all atoms are inspected for changes in local

environment. A spherical region around each atom, with a
radius typically set to between 5 and 7 Å, is defined. A bonding
graph is constructed between atoms within this region, by
connecting nearby atoms within a preset cutoff, generally fixed
between the first and second neighbor. Using NAUTY,29 a
topological analysis library, we identify the unique automorphic
group associated with this bonding graph, irrespective of the
various symmetry operations. This allows us to construct a
discrete and reusable catalog even for totally disordered
systems.
2. For each new topology encountered, excluding the

crystalline ones that would only lead to improbable events on
the simulation time scale, we launch a series of event searches
using the latest version of ART nouveau.30,31 For the two
systems studied here, we launch 50 random event searches for
each new topology and restrict our search to events with an
energy barrier less than or equal to 5 eV, generating on average
between 3 and 5 events per topology and therefore per atom in
a nonperfectly crystalline environment. To ensure a complete
catalog, new searches are also regularly launched on the most
common topologies.
3. Once the catalog is updated to include events associated

with the new topologies, all events corresponding to the current
configuration are placed in a binary tree in preparation for the
KMC step. All barriers corresponding to at least 99.99% of the
rate, computed with constant prefactor, are then reconstructed
and fully relaxed to account for geometrical rearrangements due
to short- and long-range elastic deformations. The final
individual and global rates are therefore associated with the
exact conformation.
4. Finally, the standard KMC algorithm is applied to select an

event to execute it and advance the clock according to a
Poisson distribution. Once the event is executed, we return to
(1) for the next step.
Using topological classification coupled with an unbiased

open search for transition states, k-ART handles events without
regard to the presence or not of a crystalline substructure,
constructing the event-catalog as the system evolves and fully
taking care of all elastic effects. Parallelizing event searches over
tens to hundreds of processors,6,27 k-ART has been applied
with success to highly defective crystals,32−35 alloys, and even
amorphous materials,36 generating atomistic trajectories on
time scale of 1 s or more and providing insight in the long-time
dynamics of these systems.

2.2. Implementing the Bell−Evans−Polanyi Principle.
The Bell−Evans−Polanyi (BEP) principle is based on the
observation that the local curvature on the energy landscape is
almost constant for given systems.12 Taken to its extreme (see
Figure 1), BEP implies that the barrier height out of a local
minimum is a direct indicator of the depth of the following
energy minimum so that, to obtain the maximum relaxation in a
single step, one should select the lowest available energy-
barrier.
Implementing the Bell−Evans−Polanyi principle is straight-

forward within k-ART. We follow steps (1) to (3) according to
the description above. The only difference is that after all
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barriers have been relaxed, the lowest-energy barrier is
systematically selected within the limits of the flicker handling
method as discussed in the next subsection. Although time has
no physical meaning with the BEP approach, we still use the
KMC rate to assign a clock to the BEP evolution for
comparison with k-ART results.
2.3. Handling Flickers. The efficiency of event-based

simulations is limited by the presence of flickers, nondiffusive
states of similar energy separated by a low-energy barrier with
respect to those leading to structural evolution. When the KMC
or BEP strategy, as defined above, is applied to any system with
more than a few barriers, simulations become trapped rapidly
within flickers that seize all computational efforts without
structural evolution. Many efforts have gone into handling
flickers since KMC was first introduced to material sciences, 25
years ago.25 Here we consider two approaches: the basin
autoconstructing Mean-Rate Method (bac-MRM),6 that we
have adapted from Puchala et al.’s Mean-Rate Method,18 and a
simple barrier-based Tabu.21−23

The bac-MRM, discussed in detail in ref 6, handles flickers by
merging the associated states within a single basin, solving the
internal dynamics analytically, projecting the solution onto the
various exit pathways, and correcting their respective rate. Since
the bac-MRM is statistically exact and since by definition the in-
basin states have very close energy, it is possible to adjust the
basin barrier cutoff as the simulation evolves to prevent it from
being trapped.
When the focus is on sampling configurations rather than

following the right kinetics, it is possible to limit or even forbid
the visit of already known states. In barrier-based Tabu, when a
barrier is selected, we compare the trajectory, i.e. the
displacement from the initial to saddle to final state, with the
last N moves (see ref 22 for more details). If the displacement
is not in the database, the event is generated, otherwise, the
configuration is left in the initial or final state according to their
respective Boltzmann weight. The transition can be completely
forbidden for the rest of the simulation or blocked for a number
n of steps, hence the name Tabu. Here we select n = 50.
2.4. Links to Other Algorithms. K-ART simulations apply

the kinetic Monte Carlo algorithm coupled with the bac-MRM,
which offers a statistically correct kinetics.6 Methods such as the
autonomous basin climbing13 and the minima-hoping5

minimization algorithms, for their part, generate trajectories
that go over the lowest-available energy barrier separating two

energy basis, following BEP. To avoid getting trapped into local
minima, both of these methods implement Tabu-like
algorithms to prevent revisiting the same minima over and
over again. More precisely, ABC adds a bias potential to the
visited states, while minima-hopping increases the kinetic
energy of the MD pulses when previously found states are
revisited.
If the implementation details for the various BEP-based

algorithms differ, the effect is very similar: states are never
formally blocked with either ABC or minima-hoping
approaches, but the bias potential and the MD pulse do not
impose any formal upper limit to the energy barrier that can be
crossed when the system is trapped in a local basin. The
resulting escape is therefore very close to Tabu and differs
fundamentally from flicker-handling methods, such as bac-
MRM, that keep an energy threshold that guarantees the
correct kinetics (see Figure 2 for a cartoon picture).

The simplified implementation of the various BEP-like
algorithms that is used here allows us, therefore, to identify
more clearly the role of the various elements found in the
published methods.

2.5. Systems Studied. We compare the KMC and BEP
methods and the impact of flicker handling on two different
systems: (1) the aggregation of 50 vacancies inside a 2000-atom
box of bcc iron described with the Ackland potential37 and (2)
the relaxation of a 27000-atom box of c-Si disordered through
the implantation of a single 3-keV Si ion and described with the
Stillinger-Weber potential.38 Both systems are run at 300 K and
at constant volume corresponding to crystalline density.
For the iron system, we start with a 2000-atom bcc Fe cubic

box and remove 50 atoms at random. Both BEP and KMC
simulations are launched after a simple local energy
minimization. For the Ackland potential, the vacancy diffusion
barrier is found to be 0.64 eV with MD37 and ART nouveau. At
300 K, aggregation from random vacancies into 9 to 10 vacancy
clusters was found to take on the order of 1 ms in three
independent off-lattice KMC simulations.32,39,40

The initial configuration of ion-implanted Si is described in
detail in ref 33. A 3-keV ion is first implanted in a 100 000-atom
Stillinger-Weber box38 with two surfaces along the z-direction
and periodic boundary condition (PBC) along the x and y
directions and is then relaxed for 10 ns using NVT molecular
dynamics at 300 K. A block of 27 000 atoms surrounding the
disordered region is then extracted and placed into a cubic cell
with PBC along the three axes. The kinetics of relaxation with

Figure 1. Bell−Evans principle: if all local-energy basins are similar in
size, then selecting the lowest-energy barrier from an initial minimum
(A) will lead to the lowest-energy minimun in (B) and an overall faster
energy relaxation.

Figure 2. A model of energy landscape of complex material with a
number a deep energy basins as well a flickering states that are
sampled with BEP and Tabu-like methods.
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k-ART and bac-MRM was found to be in excellent agreement
with nanocalorimetric measurements.33,34

3. RESULTS
3.1. Basin Mean Rate Method. We first compare the k-

ART and BEP relaxation methods coupled with the bac-MRM
using the Fe system. For the initial state of a 2000-atom bcc-
iron box see the Supporting Information. We run three
independent simulations for BEP and two for KMC. Each run
is about 1300 k-ART steps not counting flickering steps that are
handled with the bac-MRM. Figure 3 reports the evolution of
the total energy as a function of KMC step and as a function of
time, respectively.

The five simulations, using either k-ART or BEP, follow a
similar trajectory for the first 100 steps or so. At that point, all
BEP simulations are trapped at an energy about 7 eV below the
initial configuration for the rest of the simulations (more than
1000 steps further for each run), unable to find pathways to
more relaxed states, while the KMC simulations evolve the
system for the whole run, finishing between 25 and 28 eV
below the BEP runs. Projecting these runs on a time axis, we
see that the two methods follow the same path until about 10
μs, at which point the clock for BEP runs slows down
noticeably compared to KMC: after 1300 steps, BEP runs reach
about 100 μs compared with 1 to 10 ms for KMC.
This difference in effective time is not caused by the handling

of flickers, since both k-ART and BEP use, here, the bac-MRM.
Indeed, these BEP simulation results are consistent with Fan et
al.41 recent work using the Autonomous Basin Climbing (ABC)
method, a BEP-like approach.13 Using the same 50-vacancies Fe
system, ABC simulations produced an energy drop of 13 eV
during a simulation lasting 20 000 s, while k-ART reaches the
same energy level in the first 500 μs of simulation and
continues to relax well-below ABC’s level. Figure 4 compares
the performance of k-ART with KMC with that of Autonomous
Basin Climbing (ABC) for this system.
To understand the difference between these two methods,

we look at the time evolution of the average vacancy cluster and
the monovacancy fraction for one BEP and KMC simulation
(Figure 5 (a)). These correspond respectively to the green and
blue lines in Figure 3. As for the energy, structural evolution for
the two simulation types follows a similar path for the first 10
μs, which corresponds to the clustering of about 38% of the
initial value of the vacancies into small clusters (averaged

Figure 3. Evolution of the potential energy for three BEP and two
KMC runs of the 50-vacancy FE system as a function of simulation
step.

Figure 4. Comparison of k-ART vs ABC relaxation for the Fe system.
Red line: total energy evolution as a function of logarithmic of
simulated time; green line: evolution of cluster size; blue line:
evolution of the fraction of monovacancies. The horizontal dashed
black line corresponds to the energy level reached after 20 000 s with
ABC.

Figure 5. (a) Comparison of k-ART vs BEP for structural evolution
for the Fe system. Top: Evolution of the average cluster size as a
function of simulation step. Bottom: Evolution of the fraction of
monovacancies. Blue line: KMC; green line: BEP. (b) Selected
snapshots of the atomic configuration for a KMC and BEP runs at 200,
800, and 1300 simulations steps. Only vacancies are shown. Colors are
associated with cluster size. Monovacancies are colored in green,
cluster containing two vacancies are colored in gray, and trivacancies
are colored in dark.
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cluster size equals two). At that stage, the structural evolution
of the BEP run comes almost to a stop, while the aggregation
continues with KMC simulation with clusters reaching an
average size of 13 as the proportion of monovacancies falls to
less than 12.5% of the initial value. This supports the relation
between BEP and Fan et al. simulation observed for the total
energy (blue line in Figure 4), where the monovacancy fraction
decreased to only 52% of the initial value (averaged size 6) after
20 000 s. The structural difference between the final BEP and
KMC states is clearly seen in the snapshots taken during the
evolution of both simulation types (Figure 5(b)). Even at 800
simulations steps, we note a difference in the number of
isolated vacancies between the two types of runs.
To further understand the kinetic evolution of these two

simulations sets and their relation to the structure of the energy
landscape, we analyze the evolution of the energy barrier height
for all executed events. Figure 6 (top) shows all the energy

barriers for executed events as a function of step of KMC and
BEP simulations. For KMC simulations, we note that the
maximum barrier height increases with the step, but that, in any
step frame, the energy barrier distribution remains almost
continuous. For BEP simulations we note instead, the
maximum barrier height visited−around 0.4 eV − has been
reached and that, after this point, the same distribution of
barrier is selected until the simulations stopped after 1300
steps. KMC manages therefore to access activated barriers that
are slightly higher, 0.5 eV, than those crossed with BEP but
sufficient to unlock configurations by giving access to new
relaxation pathways.
Why would crossing high barriers be so important? Figure 6

(bottom) plots the energy released by the system, or the

asymmetry energy, for executed events associated with the 10%
highest energy barriers calculated in a moving window. In this
plot, negative asymmetry energy means that the system has
moved into a state of lower energy, while positive values are
associated with higher energy final states. We see that 93% of
these events lead to states with a higher final energy in KMC
simulation versus 53% events in BEP simulation. In BEP,
crossing these high energy barriers leads, almost half the time,
to lower energy states and, as often, to higher energy states,
while, for KMC runs, the bias is clearly toward higher energy
states.
Before discussing the significance of this observation, we first

need to check whether these results are seen in other systems.
To ascertain the generality of the results on Fe, we repeated

the study on a disordered covalent system with an equal
number of vacancies and interstitials: a 27 000-atom ion-
implanted crystalline silicon. As shown in the Supporting
Information, both systems provide similar overall results to the
Fe system.

3.2. Tabu. We now look at the effect of Tabu, an approach
that can be applied not only to handle flickers in kinetic
simulations but also to orient relaxation when searching for
global minimum. We compare Tabu with bac-MRM using both
BEP and KMC sampling techniques. Figure 7 (a) shows the
evolution of the total energy for a 2000-atom Fe box with 50
vacancies as a function of simulation step. We note that KMC-
bac-MRM provides the fastest overall relaxation, reaching
−7770 eV after 2250 steps, almost 80% faster than Tabu-KMC
or BEP. Nevertheless, in the long run, Tabu, irrespective of the
sampling method, manages to reach KMC-bac-MRM’s
relaxation level and even, in one simulation, achieve a better
energy gain.
For large-scale complex system, Tabu becomes less efficient.

Figure 7 (b) presents the total energy evolution as a function of
the simulation step of a 27000-atom box of c-Si disordered
through the implantation of a single 3-keV Si ion for two runs
of BEP with Tabu and one run with bac-MRM, and two runs of
KMC with Tabu and one run with bac-MRM. We see the two
simulations using Tabu with BEP held at high energy state and
Tabu with KMC simulation descending following the same
pathway as with bac-MRM with KMC, due, in part, to the
limited 50-step memory kernel used here.
Figure 8 gives the energy released for all selected events for

one Tabu-BEP and one Tabu-KMC simulation for the top 10%
highest executed energy barriers crossed calculated over a
moving time window. Analysis of the energy barrier height
evolution for these simulations shows that Tabu-based
simulations display a similar rate of visiting higher final energy
states as previously observed for KMC-bac-MRM: 84% of
Tabu-KMC events and 93% Tabu-BEP events lead to higher
energy states. This explains why Tabu approaches can be, on
average, as efficient as KMC-bac-MRM for finding low-energy
states. By blocking already visited directions, Tabu effectively
forces the system to sample the more asymmetric states that
lead to overall lower-energy configurations. This might explain
also why, since minima-hopping uses a Tabu-like approach, by
systematically increasing the exit energy, the method remains
efficient even though it is based on the BEP principle.5,12

In spite of these similarities, it is important to remember that
bac-MRM is statistically exact, contrary to Tabu, and that it
preserves the correct dynamics of the system. For example,
analysis of energy evolution for the four Tabu simulations

Figure 6. Top: Distribution of the executed energy barriers as a
function of the simulation step step for both BEP (green triangle) and
KMC (blue squares) simulations of the Fe 50-vacancy system.
Bottom: Asymmetric energy, i.e. energy difference between the final
and initial energy states, for events within the top highest 10% energy
barrier as a function of simulation step in the same system.
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shows sudden staircase-like decrease for the energy (Figure 7),
a behavior that is not observed with the bac-MRM simulations.

4. DISCUSSION
These results allow us to better understand the applicability of
the BEP principle to bulk systems, the importance of the
flicker-handling methods as well as more about the structure of
the energy landscapes.
As discussed in the Introduction, the BEP principle was

formulated many decades ago, and it has helped to understand
various kinetic phenomena in chemistry. In its simplest form, it
states that around a given local energy minimum, the lowest
energy-barrier will lead to the lowest energy state among those
directly connected to the initial minimum. In a recent paper,
Roy and collaborators showed that a relaxed version of BEP is
applicable to bulk systems: crossing a small barrier has more
chances to lead to a deep minimum than crossing a high-energy
barrier.12

This observation is correct but incomplete. Extensive
characterization of the energy landscape of amorphous silicon
(a-Si), for example, has shown that in fact for any event the
forward and reverse barrier height, i.e. the barrier height
computed from the initial and the final minima, respectively, are
totally uncorrelated.42 This general observation also holds, at
least, in ion-bombarded Si.34 Since the depth of the final well, as
measured from the initial state, is the difference between the
reverse and the forward barrier height, this absence of

correlation means that, on average, lower forward energy
barriers do lead to deeper minima, which explains some of the
success of the application of the BEP principle to materials.43,44

Fundamentally, therefore, the structure of the landscape does
not correspond to the original BEP principle, which states that
there is a direct correlation between the barrier height and the
depth of the final minimum.
Since the BEP principle is correct locally on average, even

though for the wrong reasons, is strictly following the lowest
available energy barrier, with respect to the BEP principle, an
efficient global minimization approach?
Results presented in the previous section show that it is not

the case, as should be expected for complex materials. To relax
efficiently, both the Fe vacancy and the ion-implanted Si
systems require crossing barriers that do not correspond to the
lowest ones available in order to land into higher energy states,
a move that goes beyond BEP-based approaches. As was shown
recently in ion-implanted c-Si and a-Si, accessing these high-
energy states is essential to open new low-energy pathways, by
moving into unvisited energy basins that can lead to low-energy
structures.33,36 This so-called replenish and relax mechanism
explains why, when treating correctly the local flickering
dynamics, BEP approaches cannot be as efficient as standard
KMC methods. Clearly, systematically selected lower energy
barriers are not sufficient to exit local energy basins.
Why then do BEP-based relaxation methods succeed in

finding low-energy states? The crucial step is in the way the
code handles local-energy traps. When applied to BEP runs, for
example, Tabu manages to prevent the trajectories from getting
trapped, allowing simulations to reach energy levels similar to
those obtained with the KMC method, in a similar number of
steps. This is done, essentially, by violating the BEP principle
and systematically blocking the lowest energy barrier, allowing
the system to cross over higher energy ones. Tabu, as was
shown by Grebner et al.,24 even enhances sampling of efficient
search methods such as simulated annealing and Basin
Hopping.3

These results confirm that efficient energy minimization in a
bulk system cannot be based on the BEP principle alone for
two reasons. (i) The BEP principle is not exact: it is the
absence of correlation between the forward and backward
energy barriers that explains why lower-energy barriers tend to
lead to deeper energy minima, not a specific correlation
between these two quantities. (ii) More important, complex

Figure 7. Evolution of the potential energy as a function of simulated step for various simulations. (a): (Fe vacancies system) BEP with bac-MRM
(B1BEP), two independent BEP runs with Tabu (T1BEP and T2BEP) and the same with KMC (B1KMC, T1KMC, and T2KMC). (b): (Ion-
implanted Si) BEP with Tabu and 1 run with bac-MRM, and 2 runs of KMC with Tabu and 1 run with bac-MRM.

Figure 8. Asymmetric energy, i.e. energy difference between the final
and initial energy states, for events within the top highest 10% energy
barrier as a function of simulation step for the Tabu-based KMC and
BEP simulations of the 50-vacancy Fe system.
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systems are composed of many minimum-energy basins; it is
therefore necessary to go over higher-energy states in order to
reach new deep-energy minima. This can be done either by
using a physically based kinetic algorithm such as simple MD45

or KMC or by systematically limiting the available phase space
to nonvisited regions,13,24 in effect forcing the system to move
over these high-energy barriers.
These results allow us to better understand what the crucial

elements explaining the efficiency of recently proposed BEP-
based algorithms are. They also demonstrate that in out-of-
equilibrium systems the odds of revisiting the same basin, when
it does not correspond to the global minimum, is small. While,
in this case, efficient sampling is helped by the capacity of
selecting from a distribution of energy barriers and not only
from the lowest one, it is not necessary, then, to have very
aggressive approaches to block regions of the phase space. This
is why standard KMC with kinetically correct flicker handling
algorithms is as efficient as BEP methods with Tabu-like
approaches for avoiding trapping.

5. CONCLUSION

In this paper, we use kinetic ART, an on-the-fly off-lattice
kinetic Monte Carlo algorithm that incorporates exactly all
elastic effects, to assess the role of the various elements of the
recently proposed Bell−Evans−Polanyi (BEP)-based method.
We did so by comparing BEP with KMC as both were coupled
to various methods for handling flickering states and traps.
Testing these methods on two systems we find that, as would

be expected, pure BEP simulations, even when handling low-
energy flickering states, become trapped rapidly in relatively
high-energy configurations, while KMC runs manage to find
ever lower energy states (on the simulation time scale). It is
possible to overcome BEP’s limits by adding a Tabu criterion
on the visited transition states, similarly to what was observed
coupling Tabu to efficient searching algorithms.24 Even a
relatively short memory kernel, with 50 states, is sufficient to
bring the efficiency of the BEP method on par with KMC, even
though the correct kinetics is lost.
This comparison of various algorithms used for sampling

energy landscape allows us to better understand the crucial
replenish and relax steps, necessary to escape local energy
minima in a complex system, confirming recent results34 and
helping to understand why and how the BEP-based method
works. They also point to the primary importance of handling
the exit from a local basin, a step that can be achieved through a
number of approaches.
Better understanding of the workings of recently proposed

minimization algorithm should help us develop more efficient
minimization methods but also relate these more closely to the
structure of complex systems’ energy landscape itself, which
remains the fundamental goal of all these methods.
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Fonds Queb́ećois de la Recherche sur la Nature et les Technologies
(FQRNT). We are grateful to Calcul Queb́ec (CQ) for generous
allocations of computer resources. Gawonou Kokou N’Tsoua-
glo acknowledges financial support from Islamic Development
bank (IDB).

■ REFERENCES
(1) Wales, D. J. Energy Landscapes: Applications to Clusters,
Biomolecules and Glasses; Cambridge University Press: 2003.
(2) Barkema, G.; Mousseau, N. Phys. Rev. Lett. 1996, 77, 4358−4361.
(3) Wales, D. J.; Doye, J. P. J. Phys. Chem. A 1997, 101, 5111−5116.
(4) Voter, A. F. Phys. Rev. Lett. 1997, 78, 3908.
(5) Goedecker, S. J. Chem. Phys. 2004, 120, 9911−9917.
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(27) Joly, J.-F.; Beĺand, L. K.; Brommer, P.; El-Mellouhi, F.;
Mousseau, N. J. Phys. Conf. Ser. 2012, 341, 012007.
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