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Abstract

Structural mechanisms in disordered materials like amorphous semi-conductors and glasses can be explored with the
activation-relaxation technique (ART). The application of a sequence of such mechanisms allows for the generation of well-
relaxed structures. The method and its application in the study of the microscopic changes in amorphous silicon and silica glass
are reviewed, and two recent improvements are presented. 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

While the smallest relevant time scale in atomic
systems is that belonging to atomistic oscillations,
around a tenth of a pico-second, the microscopic
dynamics of glassy and complex materials at low
temperature can proceed at time scales that are easily
ten orders of magnitude larger, seconds or hours.
Approaches based on the atomic oscillation time
scales, such as molecular dynamics, will not be able
to bridge this gap in the foreseeable future: alternative
approaches have to be explored.

The nature of the discrepancy between these time
scales is best understood from the configurational
energy landscape: the system finds itself in a deep
minimum surrounded by energy barriers which are
many times larger than its temperature. Only rare
fluctuations of thermal energies allow the system to
jump over a barrier and move to a new minimum.
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In this paper, we review the activation-relaxation
technique [1,2] which proposes one avenue for the ex-
ploration of such systems. We first discuss the algo-
rithm in some detail, including some new algorithmic
improvements, and then briefly present its application
to amorphous silicon and vitreous silica.

2. The activation-relaxation technique

The activation-relaxation technique consists of two
parts: a path from a local energy minimum to a nearby
saddle point – the activation; and a trajectory from this
new point to a new minimum – the relaxation.

The relaxation to a local energy minimum is a
well-defined and well-behaved operation for which a
number of efficient algorithms are available (see, for
example, Ref. [3]). We use an adaptive algorithm that
uses a steepest descent close to the saddle point and
a conjugate-gradient algorithm as the configuration
converges to the new minimum.

The activation from a minimum to a saddle point
poses a bigger challenge. While previous work con-
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centrated on low-dimensional problems for which, of-
ten, the minima were known, ART is aimed at finding
saddle points in high-dimensional energy landscapes,
knowing the location of one minimum only.

At the saddle point, all eigenvalues of the Hessian
but one are positive. In the energy landscape, this
negative eigenvalue sets the direction of a valley going
down on both sides. Starting somewhere in this valley,
convergence to the saddle point can be obtained by
keeping the configuration at the energy minimum
along all directions but the one corresponding to
the lowest eigenvalue, which is assimilated with the
local bottom of the valley, and pushing upward along
that one direction. This is in essence Cerjan and
Miller’s approach for locating transition states in low-
dimensional energy surfaces [4].

This approach is too computer intensive for re-
alistic bulk systems with hundreds to thousands of
atoms, since the time required for the diagonalization
of the Hessian grows asO(N3). By approximating the
Hessian, ART proposes anO(N) algorithm. Its stan-
dard implementation follows a modified force vector
EG, obtained byinverting the component of the force
parallel to the displacement from the current position
to the local minimumEr = Ex− Exm while minimizing all
other 3N − 1 directions:

EG= EF − (1+ α)( EF · r̂)r̂, (1)

where r̂ is the normalized vector parallel toEr , EF is
the total force on the configuration as calculated using
an interaction potential, andα is a control parameter.
Iteratively, this redefined force is followed untilEF · r̂
changes sign.

Because of this projection, the standard algorithm
fails for valleys perpendicular toEr . We now introduce
a trailing positionExt, that initially is located in the
old minimum, but is moved in the direction of the
position as soon as it is more than a trailing distance
rt behind. The direction in which we invert the force
is now chosen according toEr = Ex − Ext, thus avoiding
the limitation mentioned above. This improvement is
particularly helpful in the simulation of systems with
strong short-range potentials, like metallic glasses.

Since the forceEG as redefined in Eq. (1) is not
curl-free, it cannot be written as the gradient of a
redefined energy function. For the convergence to the
saddle point we therefore have to modify the standard
conjugate gradient method as for instance in [3]: the

line minimization in direction̂h is replaced by a root-
finding algorithm of EG · ĥ.

In non-degenerate disordered materials, only two
valleys start at the minimum: the ones corresponding
to the softest vibration mode around the minimum. To
explore other valleys leading to other saddle points,
we must therefore leave the harmonic well before
starting the search for valleys. We discuss separately
the direction of the initial displacement and its size.

Any random escape direction overlaps with the
softest elastic modes. While following the redefined
force, they tend to dominate exponentially rapidly. The
softest modes should therefore be eliminated from the
initial displacement. Starting with an initially random
direction Er0, we suppress the softest modes byn
iterations of

Eri+1=− EF(Eri ),
a series of very small steps, mathematically equivalent
to multiple applications of the Hessian.

This suppression of the softest modes in the initial
displacement has the side-effect that it boosts the
strongest modes exponentially. The result is that the
initial displacement points to a very stiff direction,
and the energy raises rapidly along this direction. We
propose here a modification: the stiffest directions
are removed from this vectorErn by simply making it
orthogonal to directionsErn+1, . . . , Ern+m, with n andm
depending on the details of the system studied. This
leaves us following a random vector from which the
softest and stiffest modes have been removed.

This initial direction is then followed until the
ratio of the perpendicular to the parallel component
of the force, as projected on the displacement from
the minimum, reaches some ratio, indicating that the
harmonic region has been left.

3. Applications

The activation-relaxation technique is well suited to
identify atomistic mechanisms for diffusion and relax-
ation in disordered systems, since the events that are
created follow closely the physical activation paths.
The method was recently used for the identification of
microscopic relaxation and diffusion mechanisms in
two materials: amorphous silicon and vitreous silica.
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3.1. Amorphous silicon

In a simulation study of amorphous silicon, we gen-
erated more than 8000 events from three independent
runs on 1000-atom samples [5] using the empirical
Stillinger–Weber potential [6] with an increased three-
body term. The activation barriers for the events range
from 0 to 15 eV, peaking at 4 eV. The number of atoms
that are displaced significantly in these events (0.1 Å
or more) lies typically around 40, but there are usu-
ally only a few bonds broken or created. A typical
event, showing only atoms rearranging their topology
and their near-neighbors, is shown in Fig. 1.

Since in this material the list of neighbors is well-
defined, we can identify three classes of events: in
perfect eventsfour-fold atoms exchange bonds but
keep their total coordination; inconserved events,
coordination defects diffuse around, while the overall

Fig. 1. A perfect event in amorphous silicon, corresponding
to the concerted-exchange mechanisms proposed by Pandey for
self-diffusion in crystalline silicon. From top to bottom: the initial,
saddle point, and final configurations. The dark atoms participate
directly into the event while the white ones are their nearest neigh-
bors. The activation barrier is 5.12 eV, with no asymmetry since the
initial and final configuration have exactly the same topology.

Fig. 2. A small event in SiO2. Shown here are the atoms that move
more than 0.1 Å during activation and relaxation, plus their nearest
neighbors. Large circles are Si atoms, small ones O. This particular
event is the creation of a dangling bond on an O. The activation
barrier and asymmetry are 3.64 and 1.35 eV, respectively.

coordination is preserved;annealing events, finally,
involve the creation or the annihilation of defects.

For the class of perfect events, we label the atoms
that change their bonding, and construct a loop con-
sisting of all created and broken bonds, visited in the
loop in alternating order. The sequence of the atoms
visited by this loop gives a classification of the topo-
logical change in the bonded network. To avoid hav-
ing many labels for the same topological reordering,
all possible loops are generated, and the alphabetically
lowest classification is chosen. Three types of perfect
rearrangements dominate the dynamics. They corre-
spond in order of likelihood to (a) an exchange of
neighbors between two nearby atoms, corresponding
to the Wooten–Winer–Weaire bond-exchange mecha-
nism introduced initially as an artificial move, (b) the
exchange of two atoms, similar to the concerted ex-
change mechanism introduced by Pandey [8] and il-
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lustrated in Fig. 1, and (c) a step in between where
two nearest neighbors are exchanged, giving a “dou-
ble” Wooten–Winer–Weaire mechanism, with a shared
backbone. We are still working on the classification of
also the conserved and annealing events.

3.2. Vitreous silica

In a study of the mechanisms occurring in silica
glass, we generated a database of 5645 events in well-
relaxed 1200-atom samples of silica, in which the
interactions were described by the screened-Coulomb
potential of Nakano et al. [9]. This study has revealed
a completely different dynamics for this material [10]
than in amorphous silicon. In particular, because of
the need to maintain chemical ordering, the perfect
mechanisms ofa-Si do not have a direct counterpart.
One frequently observed mechanism is depicted in
Fig. 2.

4. Conclusion

The activation relaxation technique provides a u-
nique tool for identifying the microscopic mecha-
nisms responsible for relaxation and diffusion in disor-
dered materials. It avoids imposing pre-defined atomic
moves, by working in the configurational energy land-
scape, and allows for real-space rearrangements of any
size. With ART, we have been able to provide the first

analysis of relaxation and diffusion mechanisms tak-
ing place below melting ina-Si andg-SiO2 and show
that their respective dynamics is qualitatively differ-
ent. The activation relaxation technique promises to
be a powerful tool in the investigation of a wide range
complex materials.

Acknowledgements

Part of the work reviewed here was performed in
collaboration with Simon W. de Leeuw. NM wishes to
acknowledge partial support by the NSF under Grant
No. DMR 9805848.

References

[1] G.T. Barkema, N. Mousseau, Phys. Rev. Lett. 77 (1996) 4358.

[2] N. Mousseau, G.T. Barkema, Phys. Rev. E 57 (1998) 2419.
[3] W.H. Press et al., Numerical Recipes (Cambridge University

Press, Cambridge, 1988).
[4] C.J. Cerjan, W.H. Miller, J. Chem. Phys. 75 (1981) 2800.
[5] G.T Barkema, N. Mousseau, Phys. Rev. Lett. 81 (1998) 1865.
[6] F.H. Stillinger, T.A. Weber, Phys. Rev. B 31 (1985) 5262.
[7] F. Wooten, K. Winer, D. Weaire, Phys. Rev. Lett. 54 (1985)

1392.
[8] K.C. Pandey, Phys. Rev. Lett. 57 (1986) 2287.
[9] A. Nakano, L. Bi, R.K. Kalia, P. Vashishta, Phys. Rev. B 49

(1994) 9441.
[10] N. Mousseau, G.T. Barkema, S.W. de Leeuw (1998), to be

published.


