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Abstract

The atomistic approach of the kinetic Monte Carlo methods allows one to
explicitly take into account solute atoms. In this chapter, we present and discuss
the different pathways available at this point to go behind nearest neighbor
pair interaction for binary alloys on rigid lattices as well as their perspectives.
Different strategies to treat complex alloys with several solutes with improved
cohesive models are exposed and illustrated as well as the modeling of self-
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interstitial diffusion under irradiation and its complexity compared to vacancy
diffusion.

Abbreviations

AKMC Atomic kinetic Monte Carlo
BKL Bortz, Kalos, and Lebowitz
CE Cluster expansion
DFT Density functional theory
FIA Foreign interstitial atom
FISE Final initial system energy
GAP Gaussian approximation potential
KMC Kinetic Monte Carlo
KRA Kinetically resolved activation
LAE Local atomic environment
NEB Nudged elastic band
PD Point defect
RPV Reactor pressure vessel
RTA Residence time algorithm
SFT Stacking fault tetrahedra
SIA Self interstitial atom
SNAP Spectral neighbor analysis potential

1 Introduction

The kinetics of alloy microstructures under nonequilibrium conditions such as
irradiation is driven by the evolution of the population of point defects introduced
by the energetic particles impinging the materials. Being capable of predicting such
evolution is an important academic as well as industrial issue that needs to be
tackled starting at the atomistic level. For this purpose, Atomistic kinetic Monte
Carlo (AKMC) is a very versatile method that can be used to simulate the evolution
of complex microstructures at the atomic scale, dealing with elementary atomic
mechanisms. It was developed more than 40 years ago to investigate diffusion events
triggered by the motion of a single vacancy (Young and Elcock 1966) in a binary
alloy. Since then, hetero-interstitials (Clouet et al. 2006; Hin et al. 2008) and self
interstitials (Ngayam-Happy et al. 2010) have been introduced in the models and
alloys of more complex nature have been investigated (Cerezo et al. 2003; Liu
et al. 1997). The purpose of this chapter is to discuss how the effect of solutes can
be taken into account in this approach. We will first start by describing briefly the
basis of the AKMC method and its key ingredients. In the following sections, we
present and discuss the different strategies available to build Hamiltonians that take
into account solute atoms as well as the techniques used to estimate the activation
barriers. We conclude by discussing the outlooks and perspectives of the different
approaches described in the previous sections.
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2 AKMC Method

Kinetic Monte Carlo (KMC) methods are techniques intended to simulate the time
evolution of processes that occur with a given known rate, used as inputs to the
algorithm (Voter 2007). It is usually applied at two scales: the atomistic scale, where
processes that can take place are the ones atoms undergo during the evolution of a
microstructure, and the mesoscopic scale, where the microstructure is coarse grained
into objects that can evolve on a lattice or not. The first papers presenting a kinetic
Monte Carlo approach were published by Young and Elcock (1966) and by Bortz
et al. (1975), the first dealing with the kinetic of the vacancy diffusion in ordered
alloys, the latter dealing with the kinetic evolution of an Ising spin system. A full
theoretical description and formalization of the AKMC algorithm was proposed by
Fichtorn (Fichthorn and Weinberg 1991). The most important feature of the AKMC
technique – as compared to atomistic Metropolis Monte Carlo (MMC) simulations
(Metropolis 1953) – is the fact that a time step can be related to each simulation step,
i.e., for instance, the jump of a point defect. In AKMC simulations, configurations
are not generated as a Markov chain and sampled respecting a given probability
distribution (usually a thermodynamic equilibrium distribution) – as it is done in the
MMC approach; rather, the configuration at step i is obtained from configuration
at step i-1 by realizing a point defect or an atom move, i.e., the Markov chain is
constructed taking into account the kinetics of the system.

We will not give an extensive description of the KMC algorithm which can be
found for instance in (Voter 2007) but rather focus on its applications to model
alloys and solute effects. We will remain in the context of diffusion controlled phase
transformation under classical conditions (for instance under thermal ageing) or in
the presence of external forcing: here irradiation. A review of AKMC applied to
precipitation can be found in Becquart and Soisson (2018). Atomistic kinetic Monte
Carlo models are based on the residence time algorithm (Young and Elcock 1966)
sometimes referred to as the BKL approach (Bortz et al. 1975). The elementary
mechanisms are the point defect jumps or the interstitial jumps in the case of C
or other hetero-interstitials. In the rigid lattice approach, which is the approach
most used so far, vacancies and interstitials (dumbbells or mixed dumbbells) can
jump from one lattice site to another lattice site (typically first nearest neighbor
sites). If hetero-interstitial atoms are included in the model, they lie on an interstitial
sublattice and jump on this sublattice. Typically one atom is assumed to move and
the rates of possible transitions are determined from the local environment around
the moving atom. According to harmonic standard transition state theory (Vineyard
1957), the frequency of a thermally activated event such as a vacancy jump in an
alloy can be expressed as:

� = νe
− Ea

kBT (1)

where ν denotes the attempt frequency and Ea corresponds to the activation energy
of the jump or the migration energy obtained as the difference between the energies
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of the system at the saddle-point and in its initial configuration. Such a description
is derived from the theory of thermally activated processes and is justified when the
thermal fluctuations are smaller than the activation energies: kBT � Ea. The attempt
frequency can be expressed as:

ν =
∏3N−3

j=1 νj

∏3N−4
j=1 ν∗

j

(2)

where νj and νj
* are the normal frequencies for vibrations at the local minimum

and saddle states, respectively, and N is the number of atoms. Note that, at constant
pressure, one should consider the enthalpies and free enthalpies of migration, but
the difference is often negligible in solids. The jump frequencies obtained using this
theory appear to be a very good approximation for the real jump frequencies up to
at least half the melting point in most solid materials (Voter 2007).

For sake of simplicity, constant prefactors of the order of Debye’s frequency
are used most of the time (typical values for transition metals are 1012–1013 s−1).
This commonly chosen assumption is based on the fact that small variations of
the activation energy are more likely to have a greater impact on the transition
probability than variations of the attempt frequency which are second-order effects
(because of the exponential dependency of the former). This assumption is supposed
to be valid especially for systems where all species have similar sizes such as 3d
transition metal typical alloying elements in steels (Fe, Ni, Cr, Mn). However, it has
been shown recently (Lazauskas et al. 2014) using Vineyard approach (Vineyard
1957) that the prefactor has an impact on the primary damage evolution and that the
use of a constant prefactor, as is done in many lattice KMC simulations, may change
the self interstitial atom (SIA) migration mechanisms, the amount of vacancy SIA
recombinations, and enhance the difference between the diffusion rates of vacancies
and interstitials. This work also concluded that the vibrational internal energy
contributes little to the attempt frequencies of small point defect cluster migration
mechanisms in Fe and that Vineyard approach was thus accurate enough to obtain
them for each of the defects simulated.

At each KMC step, the algorithm determines the jump frequencies of all possible
jumps in the system, chooses one of them according to its probability, and evaluates
the time that the system would have taken to do the jump. The associated time-step
length δt and average time-step length �t is given by:

δt = − ln r
∑

n

�X

�t = 1
∑

n

�X

(3)

where r is a random number between 0 and 1.
The key issue of this method is the estimation of the jump frequency and the

activation barrier, Ea, which, when the local chemical environment is complex, i.e.,
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when the system is composed of several atomic elements, is not straightforward to
calculate.

Three kinds of methods have been used, so far, to obtain Ea:

(i) Direct calculation of Ea: This approach is possible for simple cases, for
example, in the study of solute transport mechanisms where only one solute and
one point defect (vacancy or interstitial) are considered, i.e., when the number
of different barriers to determine is small. Such a study was performed by Costa
(2012), using an empirical potential and assuming a limited range of interaction,
e.g., first and second nearest neighbor interactions, to study thermal ageing
and spinodal decomposition in the FeCr system, or, more recently, Messina et
al. (2015) using ab initio-computed binding energies and migration barriers in
the FeMnNi system. Usually, the activation energies are tabulated, to speed up
the calculations; however, it is also possible to obtain them on-the-fly, using
approaches such as k-ART (El-Mellouhi et al. 2008) or SEAKMC (Xu et
al. 2015) discussed elsewhere in this volume (chapters “�Off Lattice Kinetic
Monte Carlo Methods” and “�Computational Methods for Long-Timescale
Atomistic Simulations”).

Another possibility to obtain Ea is to perform a cluster expansion (CE) at
the saddle point, as proposed in Rehman et al. (2013) again when the system
is not too complex or to use machine learning method based methods, such as
artificial neural network, that can be trained to estimate the activation energy as
a function of the local environment as proposed 10 years ago by Djurabekova
(Djurabekova et al. 2007), see Behler (2016) for a review.

(ii) Broken bond or cut bond models (Soisson et al. 1996): In these models, the
activation energy is given by the difference between the energy at the saddle
point position and the energy due to the interactions of the bonds broken during
the jump. The activation/migration energy is obtained as:

Ea = e
sp
k −

∑

j

εk−j −
∑

j �=k

εPD−j (4)

where e
sp
k is the binding energy of atom k at the saddle point position and where

the summations over j extend over all the broken bonds of the migrating atom
k and of the moving point defect (PD). This scheme is illustrated in Fig. 1.
Another form of cut bond model has been developed in Vincent et al. (2008a).
In this method, it is considered that the migrating atom jump does not lead to
the destruction of the bonds with the point defect but that the bonds between
the migrating atom and its neighbors are replaced by bonds with the PD and the
same neighbors. The activation energy is then given by:

Ea =
∑

j

ε
sp
k−j +

∑

j

εPD−j −
∑

j

εk−j (5)

http://link.springer.com/Off Lattice Kinetic Monte Carlo Methods
http://link.springer.com/Computational Methods for Long-Timescale Atomistic Simulations
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PD

K

Fig. 1 Illustration of the broken bond model. The green lines represent the bonds around the
jumping point defect and the blue lines the bonds around its final position

(iii) Methods based on the energy of the final and initial states: They require
that a Hamiltonian is available to obtain the energy of any equilibrium
configurations and can be used with any Hamiltonian (simple ones like pair
interactions or more complex ones). The kinetically resolved activation (KRA)
according to van der Ven (Van der Ven et al. 2001), or final initial state energy
(FISE) approximation, according to the terminology adopted by Vincent et
al.(2008a) in the context of Fe-cu alloys, is based on the Kang and Weinberg
decomposition of migration energy barriers (Kang and Weinberg 1989), which
consists in computing the migration energy as follows:

Ea = E0
a + �E

2
(6)

where E0
a depends usually on the migrating atom type but not on the chemical

environment. The method, originally applied to vacancies, can be easily
extrapolated to the migration of SIAs or foreign interstitial atoms (FIAs).

Whatever the method chosen to determine Ea, it must fulfill the detailed balance.
Broken bond and FISE/KRA approaches have been compared in a study of FeCu
alloys thermal ageing (Vincent et al. 2008a), and it was found, not very surprisingly,
that it is the parameterization rather than the method which impacts the most on the
results, i.e., the density and mean precipitate radii.
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The next section describes the different approaches used to determine the
activation energies as well as build the energetic model of the system. The energetic
model has to be built on a compromise between the complexity of the system (e.g.,
the number of solutes to treat) and the combinatorial increase of parameters to
determine and adjust, as well as a computational simplicity in order to be able to
perform a very large number of KMC steps to simulate the target microstructure
evolution.

3 Hamiltonians for AKMC Simulations

3.1 Exact Hamiltonians Based on DFT and Empirical Potentials

The evolution of the microstructure is driven by the point defects and the hetero-
interstitials motions in the lattice. The key issue in these models is, as already
mentioned in the previous section, the calculation of the jump probabilities. In
the case of perfect and pure elements with simple defects, jump probabilities are
not difficult to determine as it is easy to calculate the migration barrier and the
attempt frequency using density functional theory (DFT) (i.e. ab initio or first
principles approaches) calculations. However, in reals systems, solute atoms and
strains will impact the activation barriers as described for instance in Tchitchekova
et al. (2014) which can lead to incorrect predictions for the barriers even with a
highly accurate energy calculation. The ideal way to compute jump frequencies
would be to use a first principles approach on a box sufficiently large to limit
size effects. Even though first principles calculations are not strictly exact, since
they are based on a certain number of approximations which are more or less well
controlled according to the different cases, its use represents, at the moment, the
most reliable approach to obtain the potential energy for a given atomic distribution.
Many methods for finding barriers exist and are implemented in DFT-based codes
to determine activation barriers or migration energies. They include the nudged
elastic band (NEB) (Henkelman et al. 2000), the growing spring method (Peters
et al. 2004), the dimer (Henkelman and Jónsson 1999), autonomous basin climbing
(ABC) (Fan et al. 2010) or eigen-vector following methods such as ART-nouveau
(Barkema and Mousseau 1996; El-Mellouhi et al. 2008). However, these methods
are computationally very demanding when applied to DFT calculations, and they
have been used so far only in simple cases such as the estimation of tracer diffusion
coefficients that require the calculations of only a few jump frequencies (Mantina
et al. 2008; Messina et al. 2014). This is why it is often necessary to turn to
empirical potential or force field approach to assess energy barriers. While these
potentials are cheap enough to avoid strain artefacts due to small boxes, one of
their recurring problems is their transferability, and more precisely their ability to
correctly model the desired material under conditions far from the conditions used
when adjusting the parameters. Even with empirical potentials, methods such as
“on-the-fly” AKMC simulations that can require billions of point defects, jumps
remain time consuming without additional tricks (Athènes and Bulatov 2014).
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Furthermore, the empirical potentials available at the moment are mostly limited
to binaries, a few ternaries and even less quaternaries. Often, therefore, simpler
models based on strong approximations typically associated with rigid lattices that
are described in the following subsections, and illustrated with a few applications,
must be used.

3.2 Effective Hamiltonians Based on Cluster Expansions

Cluster expansion methods provide a formalism to derive Hamiltonian, based on
a decomposition of the interaction into pairs (that can be between different nearest
neighbor distances), triplets (εijk), quadruplets (εijkl), quintuplet, and so on (Sanchez
et al. 1984). The total energy of the system is obtained as:

Etot =
∑

i

εi +
∑

i

∑

j<i

εij +
∑

i

∑

j<i

∑

k<j

εijk +
∑

i

∑

j<i

∑

k<j

∑

l<k

εijkl + · · · (7)

3.2.1 Pair Models
The simplest approach is to use pair interaction models (Fig. 2). These models,
based simply on the presence or absence of a given atom, require a rigid lattice and
are often parameterized on experimental or DFT thermodynamical data.

In the case of an Fe alloy containing vacancies, the total energy of the system can
be obtained as:

E =
∑

j

ε
(i)
(Fe−Fe) +

∑

k

ε
(i)
(V −V ) +

∑

l

ε
(i)
(Fe−V ) +

∑

m

ε
(i)
(Fe−X)

+
∑

n

ε
(i)
(V −X) +

∑

p

ε
(i)
(X−Y )

(8)

where V stands for the vacancy, X and Y are solute atoms.
When interactions are limited to first nearest pairs, the thermodynamical proper-

ties of the system are easily determined using the Bragg Williams approximation.
This approach has been applied for instance to study the precipitation of Cu in Fe,

Fig. 2 Illustration of a pair
interaction model

eFe-V_1nn

εFe-Si_2nn
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either using a broken bond model (Soisson et al. 1996) or FISE model (Vincent et al.
2008a) to determine Ea. This is the approach also chosen by Liu et al. to investigate
complex Fe-CuNiMnSi alloys (Liu et al. 1997) using only first nearest neighbor
parameters adjusted on binary mixing enthalpies. It has since then been shown
that in bcc metals, one needs to go beyond the first nearest neighbor interaction to
correctly reproduce the interaction of solutes with vacancies or to describe properly
solute transport mechanism predicted by DFT calculations (Olsson et al. 2010)
(Vincent et al. 2006; Messina et al. 2014).

Hamiltonian-based pair models have also been derived for SIAs. These defects
are more complex than vacancies: different dumbbells form in fcc or bcc metals,
with off-lattice positions. The models have to be simplified as in Soisson (2006)
or Soisson and Jourdan (2016) for which only the elements of the dumbbell X–Y
are stored without considering the detailed migration mechanism and the dumbbell
orientation or adapted on the main diffusion mechanisms as in Vincent et al.
(2008b). In bcc Fe, most of the time, only the 〈110〉 dumbbell is considered, with
eight possible jumps (Fig. 3a). It migrates in general according to the Johnson
mechanism (Johnson 1964; Vincent et al. 2008b; Ngayam-Happy et al. 2010). In fcc
alloys such as Ni, Ni alloys or FeNiCr model fcc alloys used to simulate austenitic
materials, the 〈100〉 dumbbell is considered with eight possible translation rotation
jumps (Fig. 3b).

One possible approach decomposes the SIA interaction into pairs that take into
account the different nearest neighbor sites and the sign of the strains of these sites
as illustrated on Fig. 4. Using this approach, the dumbbell contribution to the total
energy of the system can be obtained as (Vincent et al. 2008b):

Edumb =
∑

i

⎛

⎝Ef +
∑

j

E
1nnComp
l

(
dumbi − Xj

) +
∑

j

E1nnTens
l

(
Xj

)

+
∑

i,j

Emixte
l

(
Xj − Xk

) +
∑

El (dumb − dumb)

⎞

⎠

where three kinds of interactions are considered: dumbbell-dumbbell, dumbbell-
compression, and dumbbell-tension sites.

FIAs can also be introduced on a sublattice as shown in Hin et al. (2008), where
the precipitation of carbides in Fe and FeNb alloys has been modeled under thermal
ageing using a broken bond model.

Pair interactions and a broken bond model have been used, for instance, to study
radiation induced segregation by electrons and neutrons in Fe-15 at %Cr alloys
(Soisson and Jourdan 2016) taking into account replacement collision sequences
and ballistic mixing as well as the migration of both vacancies and 〈110〉 dumbbells.
Hocker et al. (Hocker et al. 2014) used a similar approach to study precipitation
in FeCuNiMn alloys whereas Vincent and coworkers (Vincent et al. 2008b) chose
the FISE/KRA approach and pair interactions to model FeCuNiMnSi alloys under
irradiation.
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〈0–11〉
or 〈–101〉

〈101〉
or 〈011〉

〈–101〉
or 〈0–11〉

〈001〉 final 〈2 sites〉〈001〉 final 〈2 sites〉

〈010〉 final 〈2 sites〉 〈010〉 final 〈2 sites〉

〈100〉 initial

〈011〉
or 〈101〉

〈110〉

a

b

Fig. 3 SIA migration mechanisms considered (a) in bcc Fe, (b) in fcc Ni, Ni alloys, FeNiCr model
fcc alloys

3.2.2 Higher Order Cluster Expansion Models
When expanding the model beyond pair interactions, complexity increases rapidly
as different geometries must be defined for all n-uplets. The most compact ones, as
illustrated for bcc in Fig. 5, can be privileged in order to limit the possible choices
to the most significant interactions – with the selection, in general of solute atoms
close to each other.

Since each triplet has a different energy contribution, function of the three species
considered, the number of energy parameters (i.e., n-uplets containing combinations
of all the solutes) that need to be defined increases exponentionally as the number
of solute species increases (Fig. 6). As in the case of pair interaction models,
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Ei
mixed (Xj – Xk)

Ei
Inncomp(dumbi – Xj) Ei

InnTens(Xj)

++

solute - dumbbell

dumbbell - dumbbell

Solute atoms

Fe atom

Eb(dump-dumb)
1nn & 2nn

Fig. 4 SIA-solute pair interaction model proposed by Vincent et al. (Vincent et al. 2008b). Three
kinds of interactions are considered: dumbbell-dumbbell, dumbbell-compression, and dumbbell-
tension sites interactions

Fig. 5 Most compact
structure for a triplet and a
quadruplet in a bcc lattice

parameters can be adjusted on experimental thermodynamical data and/or DFT
calculations. This method can be easily used in conjunction with the FISE/KRA
method as done in (Nguyen-Manh et al. 2008) to model thermal ageing in FeCr
alloys or more recently to simulate thermal annealing in Fe–20Cr–xW alloys at
773 K (Bonny et al. 2017). The same approach was used to study ordering in
NiCr fcc alloys by Barnard et al. (2014) who used the CASM package (CASMcode
2017; CASM Developers 2016) to build their cluster expansion Hamiltonian which
was then used with the FISE/KRA approach to follow the formation of the Ni2Cr
ordered phase under thermal ageing. Van de Walle has developed the Alloy Theo-
retic Automated Toolkit (ATAT) (2017) that builds cluster expansion Hamiltonian
interfaced with DFT. ATAT includes tools for thermodynamical analysis and Monte
Carlo simulation but cannot perform kinetic Monte Carlo.

Note that even with simple pair models, the number of parameters required
increases very quickly with the amount of species that needs to be modeled as
can be seen from Fig. 6. Modelling realistic steels for instance remains a not
straightforward task, especially if the adjustment of the parameters is done “by
hand.”
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Fig. 6 Evolution of the number of parameters versus the number of species for different
approaches

3.3 Neural Network and Machine Learning Methods

One promising approach by taking into account the local environment influence on
the migration energies is the use of artificial neural network (ANN) as proposed
by Djurabekova et al. 10 years ago (Djurabekova et al. 2007). The more accurate
the training sets, the better the predictions, thus building training sets from DFT
calculations appears to be the direction to take, as long as elastic effects are
correctly accounted for. For accuracy the training set should cover a large set of
configurations. This starts now to be possible with DFT, despite requiring large
computing resources. Castin et al. (2017) and Messina et al. (2017) combining
DFT and ANN proved this approach to be manageable to accurately model the
thermal ageing of two very well-known systems: FeCr and FeCu. The training
sets have been limited to 2,000–10,000 configurations, with extra care taken to
choose different environments in order to reproduce both the solid solution and the
vacancy environment close to a precipitate. Another possible approach is genetic
algorithm implemented for instance in the open source code potfit that constructs
force matching empirical potentials (Brommer et al. 2015).

4 Taking into Account Solute Effects in the Activation
Barriers

The effect on the local atomic environment on the migration barrier can be
introduced using different approaches that are discussed in that section.

A first approach is to have Esp or E0
a depend on the local environment, and in

a first-order approximation on the number of solute atoms in the vicinity of the
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jumping atom. In a typical FISE/KRA approach, such as the one employed in
(Vincent et al. 2008b), all the effects of the environment on the migration barrier
are carried by the �E term. This simple model can be improved by introducing a
dependence of the E0

a term on the local atomic environment. In particular, an explicit
dependence of E0

a on the migrating atom’s saddle point local atomic environment –
whose effect on the vacancy migration energy is particularly strong (Nguyen-Manh
et al. 2008; Costa et al. 2014; Bouar and Soisson 2002), can be easily introduced.
This has been done, with the FISE/KRA model, to study Cu precipitation in FeCu
(Bouar and Soisson 2002) with a broken-bond model, thermal ageing in FeCr
(Nguyen-Manh et al. 2008) or the spinodal decomposition in the same system (Costa
2012). All studies show, however, that saddle point energies are very sensitive to
both the nature of the jumping atom and that of the first neighbours of the saddle
point. As a result, the kinetics pathways are changed and, for instance, in the FeCu
study, Le Bouar et al. observed that the dependence of the saddle-point binding
energies on the local atomic configurations modifies the relative mobility of small
Cu clusters and Cu monomers.

A more sophisticated model to take into account the LAE in a pair interaction
model has been proposed by Martinez et al. (Martínez et al. 2012) to study FeCr
alloys. In this approach, the pair interactions are fitted on DFT data and depend on
the local concentration as well as temperature. This allows a much better description
of the FeCr phase diagram and its miscibility gap.

Recently, this method has been adapted for multi-component dilute alloys
and, more precisely, to model the Fe-CuNiMnSi system representative of Reactor
Pressure Vessel (RPV) steels (Pannier 2017). In a first and second nearest neighbor
pair interaction model, the pair interaction values depend on whether the vacancy
is in a solid solution or in a precipitate. This method introduces some additional
degrees of freedom as compared to the original method proposed in Vincent et al.
(2008b) with a limited increase of the number of parameters that need to be adjusted
(2× more compared to the original pair model).

The cluster expansion method can also be applied to determine the activation
barrier. In their study of Li diffusion in LixCoO2 oxides, Van der Ven et al. (Van
der Ven et al. 2001) added a cluster expansion contribution to the first term (i.e.,
E0

a in Eq. 6) of the FISE /KRA equation, introducing a dependence of E0
a on the

local environment, independently of the jump direction. Rehman et al. (Rehman et
al. 2013) proposed a procedure based on cluster expansion to obtain directly the
migration barriers encountered during diffusion of Ag on Ag(100) surfaces. They
trained the cluster expansion on activation barriers obtained using the NEB method
and found that they were able to generate an accurate process rate catalogue using
this approach.

A mean field approach to include the influence of the local environment in the
migration barrier has been proposed recently to study the diffusion of H in zircaloy
(Zhang et al. 2017). At each KMC step, the migration barrier of each jump, Ea, is
modified as:

Ea = E0
a + Ei

t if R < ci
t
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where E0
a is the barrier without trapping, i.e., the activation energy in pure Zr. Ei

t is
the binding energy of H at a trapping site t with a concentration ci

t induced by solute
i, the concentration of which is ci. R is a random number drawn each time the jump
rate is evaluated.

A last approach uses many body potentials or DFT calculations, recognizing
that they take into account naturally the effects of mean local solute concentrations.
Potentials based on the embedded atom method (EAM) (Daw and Baskes 1984) are
usually a good compromise to describe metals and their alloys. Such potentials, with
additional refinements, have been used to describe the evolution of FeCr systems
during short range ordering (Pareige et al. 2009) and spinodal decomposition
(Pareige et al. 2011). In Kushima and Yildiz (2010), a database of migration barrier
energies as a function of lattice strain for a set of representative defect distributions
in the vicinity of the migration path in yttria stabilized zirconia was constructed
using DFT and the NEB.

5 Specific Issues Linked to Irradiated Microstructures

Real microstructures contain interfaces such as grain boundaries, phase boundaries,
and so on. They are important to take into account as segregation or depletion of
solutes can take place in their vicinity because they can act as sinks or traps.

In the AKMC approach, grain boundaries can be modeled using different
methods. They can simply be introduced as an atomic plane in the simulation boxes
that has perfect sink properties for vacancies and SIAs (Soisson and Jourdan 2016)
or with specific trapping properties in the energetic model (Soisson and Jourdan
2016; Piochaud 2013).

Another issue is the impact of energetic particles impacting alloys as in the
case of irradiation. Depending on the energy of the incident particle, isolated
Frenkel pairs (e.g., with electron irradiation) or displacement cascades with the
formation of vacancies and self interstitials isolated and in clusters in a localized
zone, few nanometers large (e.g., for high energy ions and neutrons) are created
in a few pisoseconds. The associated time scale being much smaller than the
atomic migration time scale, the point defects associated to one energetic particle
interaction can be introduced between two atomic migration kinetic Monte Carlo
steps.

Different approaches are possible to model such events which, in the case of
a pure metal, can lead to similar microstructures; however, in alloys, they are
not equivalent. In the case of Frenkel pairs, one can either introduce a vacancy
and a SIA, at with or without a correlation distance between them, randomly in
the simulation box as in Ngayam-Happy et al. (2010) or introduce a series of
replacements ending by one vacancy and one SIA at the other end as in Soisson
and Jourdan (2016). In the case of displacement cascades, they can be simulated
by introducing, in the simulation box, the positions of vacancies and SIAs from
a cascade database debris obtained by MD (Vincent et al. 2008b) or they can be
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obtained as a superposition of channeling sequences (along the <111> direction in
bcc crystals for instance), replacement collision sequences (with a specific length),
and replacement cascades, i.e., the introduction of vacancies and SIAs within the
volume of a sphere (Soisson and Jourdan 2016). When replacements are made in
alloys, solute mixing can occur, which may be important in concentrated alloys as
they can lead to precipitation or ordering (Lear et al. 2017).

6 Future Directions and Perspectives

Modeling the microstructure evolution of alloys, during thermal ageing, irradiation,
or under any external constrain, is a difficult task as one has to deal with multiple
solutes and/or several point defects. A balance between the computational cost,
the cohesive model accuracy and the number of input parameters to build it, the
chemical complexity (e.g., multi solute treatment) has to be found. This is why,
even as off-lattice AKMC methods are introduced, the need will remain for lattice-
based approaches as these are much faster and can achieve the billions of time steps
required to understand the physics of defects and alloys in complex environments.

There is still considerable place for improvements, and we consider, in this
section, a few directions that must be considered.

For dilute alloys, methods that estimate the activation energies in a specific
local environment as a correction of the activation energy in a perfect unary matrix
as in Zhang et al. (2017) can be used as long as the local environment remains
dilute. These methods are thus appropriate to determine for instance the diffusion
coefficients in dilute alloys but not precipitation or solute segregation.

Without a doubt, the most urgent advance must come from force field devel-
opers particularly when it comes to complex alloys and solutes. Since, ab initio
approaches will remain confined to relatively small systems for the foreseeable
future, we must turn to approximation. As far as the cohesive model is concerned,
machine learning methods that are under development to build improved empirical
potentials or cohesive models are currently the most promising path to provide a
satisfactory solution both in terms of computational costs and precision. “Quantum
accurate interatomic potentials” such as the Gaussian approximation potentials
(GAP) (Bartók and Csányi 2015) or the Spectral Neighbor Analysis Potential
(SNAP) (Thompson et al. 2015) can now be built, by constituting a very large
DFT database and the use of machine learning tools. Fitting empirical potentials to
functional forms based on the knowledge of the chemical interactions responsible
for the material cohesion has limitations and the development of methods that uses
very generic functional forms, not based on physical considerations, is well under
way (Handley and Behler 2014). This is where machine learning algorithms become
even more necessary. A recent review of these methods that discusses the central
ideas behind machine learning potentials as well as their current applicability and
limitations can be found in Behler (2016). Among the latter, the size of the database
required to fit multicompound systems remains, nevertheless, a major hurdle that
has not yet been solved. It is, however, only a matter of time before more complex
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systems become treatable, especially in the context of AKMC, where only local
minima and transition require accuracy.

An accurate description of the energetics is not always sufficient, however. In
many cases, variations in the entropy associated with diffusion mechanisms can
completely change the kinetics. Yet, evaluating the contribution of entropy on the
migration barriers is very computational demanding and will depend significantly,
again, on the cohesive model used. Theoretical methods exist to do so, see a
review in Van der Ven et al. (2010); however, there require a considerable amount
of additional calculations as one should calculate the configurational, vibrational,
electronic, and magnetic entropic contributions as it has been done for defect and
defect clusters formation energies (Marinica and Willaime 2007; Murali et al.
2015; Tucker et al. 2010; Posselt et al. 2017). This becomes especially important
for inhomogeneous conditions such as grain boundaries, high entropy alloys, and
surfaces. For example, the tetrahedral vacancy cluster, formed by a three-vacancy
cluster with a displaced atom in the center (Aidhy et al. 2016) is very unstable at
low temperature in Ni, with an energy 0.4 eV above ground state, separated by
a barrier of only 0.08 eV, but is found to be stable above 400 K, due to entropic
effects (Mahmoud et al. 2018).

Incorporating these effects in lattice-based AKMC will require a better approach
to evaluate barriers, including energy and entropy, without exploding the event
catalog and the number of local environments increases with solutes. This could
be done by expending on cluster expansion methods. One promising improvement
in this approach towards modeling more realistic microstructures is the methods
derived by Yuge and co-worker (Yuge and Okawa 2014) to take into account strain
effects which can be non negligible during alloys phase transitions, and handle
multiple lattices (Yuge 2012). The performance of three CE fitting algorithms
have been investigated in Herder et al. (2015) who find that performance depends
on system details and complexity and becomes a trade-off between accuracy and
computational cost. They find that quality of a CE depends on the data that it is fit
to and the algorithm used to identify terms to introduce in the CE.

Clearly, CE methods will have to consider more complex and larger objects
containing 10 or 20 atoms. To do that requires a better description and classification
of local environments. Topological analysis tools such as NAUTY (McKay and
Piperno 2014) or the graph approach proposed in Yuge (2017), for example,
while first used with off-lattice KMC approaches, provide a very efficient way to
differentiate between local environments, even with a large number of solutes, while
automatically taking symmetry operations into account.

Even if this is not the purpose of this chapter, one important issue is the speeding
up of the simulations as the calculation speed has to be taken into account in the
choice of the cohesive models. In particular, when both low and high migration
barriers can be encountered during the point defect motion, the defect can be
trapped and many KMC steps are necessary to change configuration which can
drastically slow down the evolution of the microstructure. Different methods are
being developed to boost the simulation, see for instance Athènes and Bulatov
(2014) or Danielson et al. (2017).
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