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ABSTRACT: Fast and accurate structure prediction is essential to
the study of peptide function, molecular targets, and interactions
and has been the subject of considerable efforts in the past decade.
In this work, we present improvements to the popular simplified
PEP-FOLD technique for small peptide structure prediction. PEP-
FOLD originality is threefold: (i) it uses a predetermined
structural alphabet, (ii) it uses a sequential algorithm to
reconstruct the tridimensional structures of these peptides in a
discrete space using a fragment library, and (iii) it assesses the
energy of these structures using a coarse-grained representation in which all of the backbone atoms but the α-hydrogen are present,
and the side chain corresponds to a unique bead. In former versions of PEP-FOLD, a van der Waals formulation was used for non-
bonded interactions, with each side chain being associated with a fixed radius. Here, we explore the relevance of using instead a
generalized formulation in which not only the optimal distance of interaction and the energy at this distance are parameters but also
the distance at which the potential is zero. This allows each side chain to be associated with a different radius and potential energy
shape, depending on its interaction partner, and in principle to make more effective the coarse-grained representation. In addition,
the new PEP-FOLD version is associated with an updated library of fragments. We show that these modifications lead to important
improvements for many of the problematic targets identified with the former PEP-FOLD version while maintaining already correct
predictions. The improvement is in terms of both model ranking and model accuracy. We also compare the PEP-FOLD enhanced
version to state-of-the-art techniques for both peptide and structure predictions: APPTest, RaptorX, and AlphaFold2. We find that
the new predictions are superior, in particular with respect to the prediction of small β-targets, to those of APPTest and RaptorX and
bring, with its original approach, additional understanding on folded structures, even when less precise than AlphaFold2. With their
strong physical influence, the revised structural library and coarse-grained potential offer, however, the means for a deeper
understanding of the nature of folding and open a solid basis for studying flexibility and other dynamical properties not accessible to
IA structure prediction approaches.

■ INTRODUCTION
Proteins are macromolecules involved in a wide variety of crucial
biological processes. Their functions are determined by their
tridimensional structure as well as their dynamics and
thermodynamics properties. Thus, the characterization of
protein folding, particularly how the tridimensional structure
of protein is encoded in its amino acid sequence, is of great
interest in molecular biology.1 Since the end of the Human
Genome Project, the development of next-generation sequenc-
ing has led to a drastic decrease in cost and a drastic increase in
the number and diversity of determined genomes,2 creating a
growing gap between the number of known sequences and
known structures. The development of fast and accurate protein
structure prediction techniques is required to study not only the
characteristics of the proteins themselves but also their
interactions with partners such as peptides and small molecules,
as protein structure predictions play a key role in the design of
new therapeutic molecules. The discovery and development of
210 new molecules approved by the US Food and Drug
Administration between 2010 and 2016, for example, were

facilitated by structural information available in the Protein Data
Bank.3

Progress in the numerical predictions of protein tridimen-
sional structure is monitored by the Critical Assessment of
Techniques for Protein Structure Prediction (CASP) meetings.4

In recent years, the utilization of multiple sequence alignments
(MSAs) with protein sequences derived from genomic
sequencing taken from huge data sets combined with very
successful machine learning techniques, such as RaptorX,5−7

RosettaFold,8 or the now state-of-the-art AlphaFold2,9 has led to
tremendous improvement of the predicted results nearing
experimental accuracy for some targets.
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However, the CASP meetings are mainly focused on fairly
large proteins of a couple hundred (to a few thousand) amino
acids. For example, only three targets tested in CASP14 have less
than 70 amino acids. However, many small peptides, of less than
a few dozen amino acids, have interesting properties. For
instance, antimicrobial peptides of such size10,11 could be crucial
in the mitigation of antibiotic resistance, which, according to
some experts, could lead to 10 million yearly deaths by 2050.12

Newly emerging interfering peptides also belong to these sizes.13

Small peptides present a unique challenge compared to large
proteins,14 and multiple computational approaches utilizing a
wide variety of techniques have been developed to target
specifically the peptide secondary and tertiary structure
prediction. For example, PSSP-MVIRT is a successful deep-
learning method for the prediction of peptide secondary
structure.15 PEPstr16 (and its extension to nonstandard amino
acid, PEPstrMod17) utilizes the observation on the prevalence of
β-turn secondary structure to add constraints on molecular
dynamics simulation to predict peptide tertiary structure. In the
parallel microgenetic algorithm (PMGA)18 techniques, pep-
tides’ structure predictions are done by utilizing a genetic
algorithm with backbone dihedral angle correlations for
sampling a density functional theory derived fitness function.
Finally, the recently developed APPTest19 was developed by
combining distance/angle constraints derived by a neural
network with simulated annealing, resulting in great structural
predictions for small peptides.
In this study, we present improvements to PEP-FOLD,20−22 a

quick and highly simplified approach for small peptide structure
prediction. The PEP-FOLD software is freely available as a Web
server23 and has been used in a variety of applications, such as
the very recent research of a SARS-CoV-2 treatment.24−26 The
PEP-FOLD approach is based on three main features: (1) the
concept of structural alphabet (SA), (2) discrete fragment
assembly, and (3) a coarse-grained energy function. We present
here improvements to two of these key features.
First, the fragment library is reworked to better sample the

conformational variability associated with the letters of the
structural alphabet. Second, we revisit the coarse-grained energy
function. The coarse-grained energy function used in PEP-
FOLD is based on the Optimized Potential for Efficient
Structure Prediction (OPEP). Compared to other force fields
such as that of CABS-fold,27 OPEP originality comes from the
coarse-grained representation and the treatment of hydrogen
bonds. The OPEP representation includes all atoms from the
backbone except the α-hydrogen and represents side chains
using only one bead. This detailed backbone representation
makes possible an explicit account for hydogen bonds, necessary
to support the OPEP-specific treatment for cooperativity in
hydrogen bonds, that favors secondary structure formation
during folding. Over the years, the OPEP force field has been
successfully applied to a wide variety of biophysical
applications,28 including the self-assembly of amyloid protein,29

associated with many neurodegenerative diseases like Alz-
heimer’s, the study of DNA/RNA systems,30 the peptide/
protein docking,31 and many more. More specifically, PEP-
FOLD predictions are guided by a simplified version of the
OPEP force field named sOPEP, that ignores most of the
bonded energy terms due to the PEP-FOLD-specific assembly
procedure that does not occur in a continuous space but in a
discretized space using a limited number of fragments
representative of the structural alphabet.22 This rigid assembly
process challenges the relevance of the non-bonded energy

terms that are based on a van der Waals formulation. In OPEP,
each particle is associated with one radius. This fixed radius can
be problematic to optimally parametrize interactions that can
occur under contradictory circumstances. For instance, a large
radius could be relevant for a large side chain interacting with
another large side chain but irrelevant for interactions with small
side chains or the beads describing the backbone, leading to high
energy values for interbead distances observable in structures.
Several ways to overcome this limitation have been proposed in
the literature such as the use of soft-core potentials,32 or
variations in the exponent values of the van der Waals terms, as
proposed by Mie a long time ago33 or more recently in the
context of long-range corrections for dispersion interactions in
inhomogeneous simulations.34 However, none of these
solutions addresses satisfactorily the requirement to have
simultaneous control over the optimal distance r0, the energy
at this distance, and the distance at which the energy is 0. In a
previous study, we had proposed a formulation making this
requirement possible for disulfide bonds.35 Here we generalize
this formulation to any exponent combination.
In former studies, the optimization of sOPEP was done on

large ensembles of decoys generated with a wide variety of
sampling techniques: molecular dynamics, threading, greedy
assembly, etc. These sampling algorithms have different search
spaces compared to PEP-FOLD, which could have an impact on
the effectiveness of sOPEP. Second, the classification score used
for the optimization was the TMscore,36 a score basedmainly on
geometric factors (mean distance between corresponding Cα-
atoms), while sOPEP energy terms mainly involve interatomic
interactions (contacts, explicit hydrogen bonds, etc.). Finally,
only a small portion of the parameters were optimized, while
most of them were derived from experimental structures, with
little consideration for interactions interdependence.
In this study, we present a reworking of the non-bonded

interactions of sOPEP as well as the reoptimization of all of its
energy components. We analyze how the combination of the
newly improved fragments library and the newly optimized
sOPEP potential impacts the quality of PEP-FOLD predictions,
and we compare these to state-of-the-art approaches for both
peptide and structure predictions.

■ MATERIALS AND METHODS

PEP-FOLD. PEP-FOLD relies on a hidden Markov model
(HMM) derived structural alphabet (SA).37 It consists of 27
letters that correspond to fragments of four residues overlapping
by three residues. Thus, the 3D conformation of a peptide of
length L can be described by L − 3 SA fragments.
More specifically, PEP-FOLD prediction of the 3D structure

from the amino acid sequence is performed according to a three-
step protocol:

1. SA profile prediction: PEP-FOLD first converts the
amino acid sequence into a sequence of letters taken from
the structural alphabet (SA). This is achieved by using a
support vector machine (SVM) that takes as input a
matrix of eight series of 20 values. The 20 values
correspond to the position-specific scoring matrix as
determined by PSI-BLAST.38 These eight series corre-
spond to those of the four amino acids of the fragment,
extended by two on each side. The SVM has been trained
to predict from the 160 values of the input the probability
of being associated with each of the 27 letters. For a
peptide of length L, the SVM is used iteratively for all L−
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3 fragments of four amino acids. The result is a SA profile
of size 27 × (L − 3) that gives the probability of each
fragment of the protein to be described by each of the 27
letters of the SA. Given the SA profile, the forward-
backtrack algorithm (FBT) or a taboo sampling algorithm
is then used to generate a specified number of suboptimal
trajectories in the SA letter space from the SA profile.20

2. Tridimensional reconstruction: Each of these SA
trajectories is used to generate a 3D model. First, an
initial model is built from the rigid assembly of the
fragments associated with each SA letter sequentially. The
polypeptide chain is built by adding amino acid by amino
acid, starting from an initial fragment of four amino acids.
At each step, all possible conformations are generated by
superimposing the fragments associated with the SA letter
at the current position to the last three amino acids of the
conformations generated at the previous step. A modified
greedy algorithm39 is used to filter the generated
conformations at each step of reconstruction. A portion
of the structures are kept based on their predicted energy
according to the sOPEP force field22 with the rest selected
at random among the remaining structures.

3. Monte Carlo: As a final step, the resulting best
conformations associated with each SA trajectory are
then refined using a Monte Carlo procedure; at each
Monte Carlo step, a fragment is randomly replaced by
another and the modification is accepted based on a
Metropolis criterion. Note that the fragments themselves
are not allowed to modify their structure. It is the
replacement of one fragment by another which conditions
the change in the conformation.

For a more thorough description of the PEP-FOLD protocol,
we refer the reader to the Lamiable et al. article.20

Library of Fragments. The first part of PEP-FOLD, which
is revisited here, is the fragment library. The structure of a
nonredundant collection of proteins was decoded as a series of
strings of SA letters using the Viterbi or the forward−backward
algorithms (see Camproux et al.37). Fragments of four amino
acids associated with each of the 27 letters were collected, and
for each letter, the clustering of the fragments allowed
representative fragments of the letter to be identified, with
their number depending on the conformational variability of the
letter.
Two main changes are made with respect to the initial design

of the library of fragments. The first one concerns the approach
used to superimpose the fragments in order to generate a
distance matrix between each of them. While superimposition
was performed originally using the backbone of the four amino
acids of the fragments, we opt here to superimpose only the
three first amino acids to measure the RMSD between the
fragments. This modification delivers a scheme that is expected
to be more consistent with the HMM concept, as it allows a
better measurement of the diversity of the position of the fourth
amino acid.
The second is a change in the clustering itself. Instead of using

dynamics clustering, we now use the Ward algorithm, as
implemented in the hclust module of R, using the squared
dissimilarity values (ward.D2). The resulting tree is then used to
identify clusters separated by some arbitrary cutoff value. A
similar value was used for all SA letters. In order to keep the
calculation tractable, only a limited number of fragments was
randomly drawn from the complete sets. A set of 5000 was found

to be sufficient to ensure a satisfactory reproducibility. Cluster
centroids used for the fragment assembly are taken as the
fragment closest to all other members of the cluster. Finally,
outlier clusters, i.e., those including less than 2.5% of the total
number of fragments, are discarded. This threshold, which
would allow up to 40 equally distributed clusters, is much lower
than the expected frequency of well populated clusters whose
number is, in practice, of the order of 15−20. From now on, the
original and updated libraries will be referred to as Lib1 and
Lib2, respectively.

sOPEP. One of the PEP-FOLD particularities is the use of a
physics-based/knowledge-based coarse-grained potential,
sOPEP, to discriminate between structures. This description
plays a crucial role in guiding the 3D reconstruction as well as in
the Monte Carlo refinement step.
The coarse-grained representation used in sOPEP is based on

theOPEP22,40 force field representation. TheOPEP force field is
a coarse-grained model where each amino acid is represented by
a total of six pseudoatoms, as shown in Figure 1: the backbone is

represented by five pseudoatoms for atoms N, H, Cα, C, and O,
and a single pseudoatom is used to represent the side chain
(SC). The position for the side chain (i) is fixed based on the C(i
− 1), N(i), and Cα(i) positions and using predetermined
centroid values.41

The sOPEP potential is a variation on OPEP targeted at the
specific structural alphabet approach of PEP-FOLD; it is
composed of three main energy terms: bonded interactions
(dihedral angles), non-bonded interactions (repulsion/disper-
sion effects), and explicit hydrogen bonds (with secondary
structure cooperativity). In the following, the original
formulation/parametrization is referred to as sOPEPv1, while
the formulation/parametrization introduced here is called
sOPEPv2. The complete formulation of sOPEPv2 as well as
its key differences with sOPEPv1 are presented below.

Bonded Potential. The only bonded interaction considered
in sOPEPv1 is the dihedral angleϕ (Figure 1). In addition to the
dihedral angle ϕ, sOPEPv2 also accounts for the dihedral angle
ψ (Figure 1). These two dihedral angles are of crucial

Figure 1. Coarse-grained representation in sOPEP. The backbone is
represented in all-atoms format with all backbone atoms but HAN,
HN, Cα, C, and Opresent, while side chains are represented by a
single interaction center. Also indicated are theϕ and ψ dihedral angles.
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importance in the description of protein conformations, as
demonstrated by the well-known Ramachandran plot. Since, in
PEP-FOLD, the geometry is mainly imposed by the super-
imposition of the discrete SA letters, the impact of this addition
is minimal, but it is added here for completeness.
As PEP-FOLD constrains the backbone by a rigid association

of the fragments of the SA letters, sOPEPv2 uses a simple flat-
bottomed quadratic potential to described the energy associated
with dihedral angles ϕ described by

ϕ ϵ ϕ ϕ= −ϕ _ _E ( ) ( )i i irama 0 sc
2

where ϕ0_sc_i = ϕ within the interval [ϕlow_sc_i, ϕhigh_sc_i] and
ϕ0_sc_i = min(ϕ − ϕlow_sc_i, ϕ − ϕhigh_sc_i) outside of the interval
ϕlow_sc_i and ϕhigh_sc_i are specific to each amino acid type.
sOPEPv2 uses the same equations for describing the dihedral

ψ angle with adapted parameters.
Non-Bonded Potential. The potential associated with

repulsion/dispersion effects was slightly reworked in sOPEPv2.
For side chain−side chain interactions, sOPEPv1 adopted a dual
formulation using either a repulsive term or a repulsive/
attractive formulation based on the type of amino acids of the
pairs.22 In sOPEPv2, a repulsive/attractive formulation is
adopted for all side chain pairs, and the same formalism is
used for all non-bonded interactions between any pair of
pseudoatoms, whereas, in sOPEPv1, the van der Waals
formulation was in use for backbone−backbone and back-
bone−side chain interactions. Finally, non-bonded interactions
including HN are not considered, and HN interactions are only
considered for hydrogen bonds.
The repulsion/dispersion effects are described using the

following Mie potential33 given by
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It is thus possible to have control over the well depth, its
position, and the position where the potential is zero, but the
slope at gR0 cannot be adjusted independently. This formulation
makes it possible, to some extent, to limit the impact of the
representation of the side chains using only one bead. sOPEPv1
parameters include ϵij and gR0ij specific to each pseudoatom type
pair and potential minimum defined by the sum of individual
pseudoatom type radii: rij

0 = ri
0 + rj

0. sOPEPv2 retains the
sOPEPv1 description for ϵij and gR0ij (using a nij/mij
combination) and optimizes rij

0 for each heavy atom type pair
specifically. Moreover, as described above, all pseudoatom pair
interactions include the attractive and repulsive terms. To make
it compatible with sOPEPv1, the initial value for ϵ is set at 0.05
kcal/mol, similarly to side chain/backbone and backbone/
backbone interactions.
Explicit Hydrogen Bond. Hydrogen bonds are considered

explicitly in the OPEP family of potentials. sOPEPv2 keeps the
same formulation as sOPEPv1: a hydrogen bond between
residue i and residue j is characterized by the hydrogen/acceptor

distance rij and the donor/hydrogen/acceptor angle αij. The
hydrogen bond potential is defined as follows
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where σ is the position of the potential minimum and ϵ is the
potential depth. We distinguish between α-helix-like hydrogen
bonds defined by O(i)−H(i + 4) and other hydrogen bonds.
Hydrogen bonds between a pair of residues separated by less
than four amino acids are not considered.
sOPEP also includes a cooperativity term between hydrogen

bond motifs present in secondary structure. In sOPEPv1, the
cooperativity formulation involves a per-residue cooperativity
propensity associated with α-helix and β-sheet.22,41 sOPEPv2
integrates the cooperativity formulation of sOPEPv1 but does
not include a residue-specific cooperativity propensity.
The cooperativity, which involves pairs of hydrogen bonds

(between residues i and j and residues k and l), is used to
stabilize secondary structure motifs and distinguishes between
α-helix cooperativity and β-sheet cooperativity. The coopera-
tivity energy is given by the following:
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Optimization Protocol. The optimization of the sOPEPv2
parameters follows the basic optimization scheme developed for
earlier versions of OPEP22 and sOPEP.22 The optimization
process is designed to allow sOPEPv2 to discriminate between
conformations almost identical to the experimental structure
(native conformations), conformations resembling the exper-
imental structure (near-native conformations), and the rest of
the possible conformations (non-native conformations) without
imposing additional biases associated with intermediary
approximations such as all-atom force fields. This protocol
mimics, in a general way, the funnel description of protein
folding used to fit simplified force fields. However, while some
optimization approaches focus on the native state,42−44 we
follow41,45 by simply requiring that native structures have the
lowest energy, followed native-like and non-native, defined using
global scoring. We select to use this three-part classification,
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instead a more complex categorization built on more specific
structural elements, such as in ref 46, due to the nature of the
force field and its focus on shorter sequences.
More specifically, the decoys’ classification defines a

remarkably simple set of inequalities

<

<

<

E N E L i j

E N E M i k

E L E M j k

( ) ( ), for all ,

( ) ( ), for all ,

( ) ( ), for all ,

i j

i k

j k (6)

where E(X) is the sOPEP energy of a decoy Xh, being the h = i, j,
k element of the X = N, L,M, where N, L, andM correspond to
the native, near-native, and non-native classes of decoys,
respectively (see below). The optimization scheme uses these
inequalities to classify an ensemble of decoys, on which the
parameters are optimized.
The following sections will describe how (1) decoys are

classified, (2) protein targets are selected for the para-
metrization/validation ensemble, (3) decoys are generated for
each protein target, and finally (4) the optimization score and
protocol are defined.
Decoys Classification. In order to define the set of

inequalities given in eq 6, it is necessary to adopt a criterion
for decoys classification, as there is no unique way to set up the
classes. The optimization of sOPEPv122,41 used a decoy
classification based on the TMscore.36 Here, we select, rather,
the CAD score, a score based on the similarity of interatomic
contacts,47,48 to classify decoys into the non-native, near-native,
and native class. This score presents features that make it
particularly suitable for optimizing sOPEPv2: (i) it is based on
interatomic contacts, and it was shown (ii) to be more accurate
in terms of the HB network similarity and (iii) to give more
realistic stereochemical features according to MOLPROBITY49

as compared to other highly used scores such as the TMscore
(sOPEPv1), the GDT-TS, and the RMSD.48 These features are
well aligned with the sOPEP force field, which is based on
interatomic interactions, explicit hydrogen bonds, and hydrogen
bond cooperativity in secondary structure.
The CAD score47,48 has been developed for the comparative

analysis of protein structures at atomic resolution. It is defined as
follows
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whereT(i,j) andM(i,j) are the contact area between residues i and j
for the target structure and model structure, respectively. Using
an all-atom representation, the contact area is estimated using a
Voronoi diagram of the heavy atoms described by hard spheres
with a radius corresponding to their van der Waals radius. In
order to compute the CAD score in the coarse-grained
representation of OPEP, we define new atom types correspond-
ing to the OPEP side chains with the radius taken from
sOPEPv1. In the following, we refer to this score as CAD-CG.
Our classification is based on two main elements. We first

consider the empirical distribution of the all-atom CAD score
(CAD-AA) (and the cumulative distribution) presented by
Olechnovic et al.48 The overwhelming majority of the score is

distributed between values of 0.3 and 0.7. More than 80% of the
structures have a CAD-AA below 0.60, while more than 90% of
the structures have a CAD-AA below 0.65. The second factor is
based on the highest CAD-CG predictions generated by
sOPEP1/Lib1. After visual inspection, we determine, in
agreement with Olechnovic observations, that a CAD-CG
above 0.60 is associated with largely correct secondary structure
predictions while a CAD-CG of above 0.65 is associated with
accurate secondary and tertiary structure. Thus, the native, near-
native, and non-native classes are characterized by CAD score
ranges of [0.65, 1.00], [0.60, 0.65], and [0.00, 0.60], respec-
tively.

Selection of Protein Targets. The parametrization ensemble
for optimizing sOPEPv1 contained 12 proteins or protein
fragments: 1abz (α, 40 aa), 1dv0 (α, 47 aa), 1e0m (β, 37 aa),
1orc (α/β, 71 aa), 1pgb (α/β, 56 aa), 2gb1f (a β-fragment of
2gb1 spanning residues 41−56), 1qhk (α/β, 47 aa), 1shg (β, 62
aa), 1ss1 (α, 62 aa), 1vii (α, 36 aa), 2ci2 (α/β, 83 aa), and 2cro-
fisa (α, 71aa).22

In order to improve the original sOPEP parametrization
ensemble, we probe the Protein Data Bank for protein targets
with the following characteristics: sequences that (1) have 70
amino acids or less, (2) are monomers, (3) contain only
standard amino acids, (4) have a structure determined in a pH
between 5.5 and 8.5, (5) are not membrane proteins, (6) are not
making interactions with ions or ligands, and (7) show no more
than 30% sequence similarity with others in the set. An
additional six targets with more than 30% sequence similarity
were added to the validation ensembles when they were
considered in previous PEP-FOLD publications20−22 (see the
Supporting Information for the listing).
This leaves 135 protein targets, that we further divide into a

parametrization and a validation ensemble. For each protein
target, we generate the reference structure for the CAD-CG
score computation in the following manner: we extract the first
model from the Protein Data Bank, we minimize it using the all-
atom force field AMBER99sb*-ILDN50 using the GROMACS
software,51 and then we convert it to the sOPEP coarse-grained
representation.
To try and minimize potential problems in the SVM part of

PEP-FOLD and really focus on the potential optimization, we
further classify the targets based on whether or not sOPEP1/
Lib1 is able (i) to generate native predictions for the target,
irrespective of their energy, and (2) to correctly assign a low
energy to the native prediction with respect to near and non-
native structures. The classification protocol is presented in
Figure 2. For each target, we first generate 500 PEP-FOLD
predictions with Lib1/sOPEPv1 and assign the resulting
structure to one of the three classes using the CAD-CG (see
the Decoys Classification section).
If the lowest energy prediction is in the same class (native/

near-native) as the best generated prediction, the sequence
target is placed in the Generated/Correctly Classif ied (G/CC)
category because PEP-FOLD predictions (Lib1/sOPEPv1) are
already able to provide reliable folding for this target. If, on the
contrary, none of the generated structures are classified as native
or near-native, the target sequence is placed in theNot Generated
(NG) category: sOPEP1/Lib1 fails to produce a satisfactory
folding. Finally, if predicted native or near-native structures are
generated but do not correspond to the lowest energy
prediction, the target sequence is placed in the Generated/
Incorrectly Classif ied (G/IC) category, meaning that, for this
target, sOPEP1/Lib1 is able to generate a good structural
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prediction, but its energy is high with respect to non-native and
near-native structures.
Out of the 135 protein targets, 48, 64, and 23 sequences are

placed in theG/CC,G/IC, andNG categories, respectively. The
full list of targets is presented in the Supporting Information.
For the optimization, we focus our attention on the targets

from the G/IC ensemble, since, for these targets, the potential is
the primary hurdle to improvement of the predictions. From the
64 targets of the G/IC ensemble, we select 25 targets with
special care given to contact and structural diversity in order to
build the parametrization set. These selected targets are 1b03 (β,
18 aa), 1bhi (α/β, 38 aa), 1cpz (α/β, 68 aa), 1e0n (α/β, 27 aa),
1fex (α, 59 aa), 1g2h (α, 61 aa), 1go5 (α, 69 aa), 1i6c (β, 39 aa),
1jjs (α, 50 aa), 1spw (β, 39 aa), 1uxd (α, 65 aa), 1wcn (α, 70 aa),
1yiu (α/β, 37 aa), 1z4h (α/β, 66 aa), 1zv6 (α, 68 aa), 1zxg (α, 59
aa), 2b7e (α, 59 aa), 2bby (α/β, 69 aa), 2dt6 (α, 64 aa), 2fmr
(α/β, 65 aa), 2l92 (β, 50 aa), 2l93 (α/β, 55 aa), 2lma (α, 22 aa),
2mwf (β, 32 aa), and 2ysb (β, 49 aa). More specifically, the
optimization ensemble is composed of 11 α-proteins, 6 β-
proteins, and 7 α/β-proteins. To show the diversity of included
contacts, the side chain contact frequency of the targets in the
parametrization ensemble is presented in Figure S1. Only the
MET−MET contact is absent from the selected experimental
structures. We also note few contacts with CYS, because targets
forming disulfide bonds are excluded.
Decoys Generation. We then generate decoys on which to

optimize the parameters for each protein target identified
previously.

In sOPEPv1 optimization, decoys were generated using
multiple techniques: (1) molecular dynamics, (2) threading, (3)
greedy assembly, and (4) simulated annealing.41 Between 430
and 928 decoys were generated for each target for an average of
550 decoys per target.
In the present work, all decoys are generated directly with the

PEP-FOLD protocol. We use 500 suboptimal sequences in the
SA letters space generated using the FBT algorithm. For the
greedy algorithm, we use a heap size of 300, of which 100 are
selected based on the sOPEP energy while 200 are randomly
selected. Finally, the structures are refined using 30,000 Monte
Carlo steps (see the PEP-FOLD section).

Parameters Optimization. Using the inequalities of eq 6
based on our decoys classification, we define the optimization
score as follows
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where Ntot is the total number of inequalities, T is the total
number of targets, Nt is the number of inequalities associated
with target t, C is the total number of decoy classes (native, near-
native, and non-native) included in the evaluation, and Dt

i is the
number of decoys for target t in class i. The sum over i and j is
done over all decoy classes from native to non-native. H(Ejj −
Eii) is the Heaviside function which equals 1 if the energy of
decoy ii is smaller than the energy of decoy jj: Ejj − Eii > 0. To
prevent that improvement in the resolution of inequalities from
being dominated by a single target with more decoys, the score is
normalized by the total number of inequalities for each targetNt.
The optimization of sOPEPv2 parameters is done using

particle SWARM optimization (PSO),52 as implemented in the
pyswarm python package. This optimization technique works by
moving a set of particles, each representing a candidate solution,
iteratively in the search space according to the following velocity
and position equations

ω ϕ ϕ⃗ + = ⃗ + ⃗ − ⃗ + ⃗ − ⃗
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where ω, ϕp, and ϕg represent the inertia, the “cognitive”
coefficient, and the “social” coefficient, respectively. ⃗p is the best
position visited by each particle individually, and ⃗g is the global
best position visited by the swarm. rp and rg are the real random
numbers between 0 and 1. In this work, the particles correspond
to the sOPEP2 parameters, and we use the default values for the
inertia and the cognitive and social coefficients:ω = 0.5,ϕp = 0.5,
and ϕg = 0.5. Initial velocities are set randomly according to a
uniform distribution; 500 particles are used for the optimization
process, as described below.
Only a small fraction of the parameters were directly

optimized for sOPEPv1: the parameters r0 and gR0 for the
repulsion/dispersion interactions were determined directly from
the distance distributions computed on the Protein Data Bank
and were not optimized further; only the ϵ parameters of the
repulsion/dispersion interactions were optimized.22

For sOPEPv2, all parameters are reoptimized. The pair
potential involves 300 pairs of heavy atom type (210 side chain/
side chain, 80 side chain/main chain, and 10 main chain/main
chain), each associated with four parametersϵ, r0, n, and m
(giving the value of gR0)for a total of 1200 parameters. For
the HB and cooperativity interactions, we have a total of five

Figure 2. Target classification based on PEP-FOLD predictions. Each
protein target is classified in one of three ensembles: Generated/
Correctly Classif ied (G/CC), Generated/Incorrectly Classif ied (G/IC),
andNot Generated (NG). Targets for which the best predicted structure
is in the non-native class are placed in ensemble NG (no predicted
structure in the native or near-native class). Targets for which the lowest
energy structure is in a worst class than the best predicted structure are
placed in ensemble G/IC. Finally, targets for which the lowest energy
structure is in the same class as the best predicted structure are placed in
ensemble G/CC.
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parameters for ϵα/β
HB , ϵα/β

coop, and σ. Finally, for the ϕ/ψ potential,
we have 2 ϵ values and 40 lower and higher limits ϕlow/high_sc_i/
ψlow/high_sc_i (2 values per amino acid). In preliminary tests to
maximize the speed and efficacy of the optimization, increasing
the number of particles from 100 to 250 improves the best score
by∼25%. Further increasing the number of particles from 250 to
500 and to 1000 leads to more modest improvements of,
respectively, ∼5 and 8%. Therefore, we select to use 500
particles for a maximum of 75 iterations or until the score is
stable for 10 iterations, whichever comes first. A final
optimization step is also tested with 750 particles, but no
improvements to the final score are noted.
Iterated Optimization Procedure. To take into account the

close relationship between the conformational search and the
force field, we use an iterative optimization procedure that is
based specifically on PEP-FOLD generated decoys, as described
in Figure 3.

The optimization process for sOPEPv2 is presented in Figure
3. Each iteration involves the following three steps:

1. All 1287 (1200 non-bonded, five for hydrogen bonds and
cooperativity and 82 for dihedral angles) sOPEP
parameters are optimized. Ten independent optimiza-
tions (randomly generated SWARM positions and
velocities) are launched. Only the optimized parameters
leading to the best score are used for the next steps.

2. With the optimized parameters, new PEP-FOLD
predictions are generated, as described in the Decoys
Generation section on the protein sequences of the
parametrization ensemble.

3. These newly generated decoys, that reflect the biases of
the optimized potential, are added to the optimization

ensemble. This approach allows the fitting procedure to
include regions of the search space that could be available
using the new parameters, mainly new wrong predictions
with good energies.

In the full optimization cycle for sOPEP2, this whole
procedure is repeated five times, leading to stable results. After
the update of the library of fragments, from v1 to v2, we further
optimize the bonded parameters, taking into consideration the
difference in the local superposition of the new fragment. To
reinforce this improvement, we use a more stringent score that
requires a threshold of 0.6 for BC-WDC53 in addition to the
CAD-CG for the definition of native and near-native decoys.
The BC-WDC is a nonlocal score based on the volume defined
by the tetrahedrons formed by quadruplets of Cα and the
geometric center of the protein. This added score helps with the
identification of correct domain orientation, for which a local
score such as the CAD score is less sensitive.48

■ COMPARISON WITH STATE-OF-THE-ART
TECHNIQUES

In order to probe the quality of PEP-FOLD predictions on small
peptides, we compare our results with three state-of-the-art
machine learning techniques: the APPTest server,19 the
RaptorX server,5−7 and AlphaFold2.9

APPTest uses constraints on distances and dihedral angles
determined with a neural network in simulated annealing
simulation for the prediction of small peptide structures.19 It was
recently tested against other software for the structural
predictions of small peptides and showed a high rate of success.
RaptorX uses an ultradeep residual neural network (ResNet)

on multiple sequence alignment to predict the probability
distribution of interatomic distances and orientations. Then, a
gradient-based minimization is used to build a 3-D model from
the potential derived by ResNet. The RaptorX server had
excellent results in CASP12 and CASP13.5−7

AlphaFold29 works by feeding a deep neural network with
multiple sequence alignment features obtained from the
UniRef90,54 BFD,55 and MGnify56 databases. One particularity
of AlphaFold2 is that is uses a novel attention-based deep
learning architecture. This first step results in a sequence-specific
probability distribution for interatomic distances and dihedral
angles. The derived potential is then minimized via a gradient
descent algorithm. AlphaFold2 showed tremendous results on
the targets of CASP14.9

In order to compare the results with PEP-FOLD, the all-atom
predictions of APPTest, the RaptorX server, and AlphaFold2 are
converted into the sOPEP coarse-grained representation (the
main chain stays unchanged) before comparison.

■ RESULTS

Updated Library of Fragments. In the original library
(Lib1), a total of 182 four-residue fragments had been identified
for the 27 structural alphabet (SA) letters. Seven of these
fragments were associated with SA letters corresponding to α-
helix (A, a, V, W), while 17 were associated with SA letters
corresponding to β-sheet (L, N, M, T, X).
Using the new strategy and gradually decreasing the clustering

cutoff from 2.0 Å2 down to 1.5 Å2, the number of separate
clusters increases from 161 to 210. We select 1.9 Å2 as a
reasonable compromise between the number of clusters and the
effectiveness of structure reconstruction.

Figure 3. Overview of the optimization protocol. In the initial step of
the optimization (top green frame), the parametrization ensemble is
composed of 500 PEP-FOLD predictions for each target. The sOPEP
parameters are then optimized utilizing an iterative procedure (bottom
blue frame), in which the parametrization ensemble is improved by
adding newly generated PEP-FOLD predictions.
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This updated library, dubbed Lib2, contains 166 fragments, 7
of which are associated with SA letters corresponding to a α-
helix conformation and 28 to β-sheets. This increase in the
number of fragments associated with β-strands is a direct
consequence of the change of strategy in fragment super-
imposition prior to clustering.
Optimization of the sOPEPv2 Parameters. To separate

the impact of upgrading the fragment library from that of
revising the force field, we first perform a full optimization cycle
with five optimization steps on decoys generated using the
original fragment library. Step to step improvements of the
fraction of unsolved inequalities are presented in Figure 4.

Before optimization, with 500 decoys per target, 64.5% of the
total number of inequalities are solved with the unoptimized
second version of the potential, compared to 67.5% for the
original potential. The optimization leads to an improvement of
24.6% in the number of unsolved inequalities. After five
optimization steps, with 2500 decoys per target, associated
with a 2.4% improvement in the number of unsolved
inequalities, the reoptimized potential is able to solve 75.5% of
the total number of inequalities.
To take into consideration the difference in the local

superposition of the new fragments associated with Lib2, we
only reoptimize the bonded potential (phi/psi parameters)
while keeping the non-bonded parameters fixed to their
previously optimized values. Additionally, we use a slightly
more stringent classification score as described in the Materials
and Methods section. The optimization is performed over 500
newly generated PEP-FOLD predictions using Lib2 and
sOPEPv2 for each target in the parametrization set. This new
optimization step leads to a 2.8% improvement in the number of
unsolved inequalities. Since only a small improvement in the
number of unsolved inequalities is observed, in addition to the
fact that only the torsion angle parameters are optimized (82
parameters out of 1200 for the non-bonded parameters), we
consider the optimization converged after this single step.
The optimization has a noticeable impact on the non-bonded

energy terms. The exact values of the parameters are provided in
Supporting Information Table S1. The optimization affects the
r0 values only slightly, and its average variation during the
optimization is of only−0.01± 0.79. Few large deviations occur
for side chain−side chain interactions. The largest decrease
occurs for the ASP−TRP pair (difference 1.91 Å) and the largest
increase for HIS−GLN (1.82 Å) and MET−GLN (1.80 Å). For

the ϵ parameters, we observe an average deviation of −0.09 ±
0.19 Å, with the largest decrease for CYS−CYS (−0.9 kcal/mol)
and the largest increase for PHE−MET (0.66 kcal/mol). After
optimization, the ϵ values for ASN−LEU and THR−LEU are at
the maximum allowed value, indicating that these interactions
stay mainly repulsive even with the attractive/repulsive
formulation. Larger deviations are observed for gR0, which
tends to decrease. On average, the difference is −0.20 ± 0.67 Å,
with minimal and maximal deviations of −2.07 and 1.61 Å for
ASN-THR and GLN-SER, respectively. In sOPEPv1, the
repulsive strength at short distances is controlled by moving
the asymptotic divergence around zero instead of directly
changing the exponents which are still 12-6.22 With this in mind,
the most striking difference is observed for the exponents n and
m. Their variation during the optimization is, on average, −4.96
± 3.95 and −3.13 ± 2.36, respectively. For close to 160
interactions involving the side chain pseudoatom, n tends to be
close to 4 (compared to the initial value of 12), while m ranges
from only 0.6 to close to only 4. Although such exponents are
less repulsive than the original 12-6, the fact that the asymptote
stays at zero for a Mie potential33 can still lead to sharper
repulsion at shorter distances, as discussed in the following
paragraph. Strikingly, it is mostly side chain−side chain
interactions that are modified, whereas side chain−backbone
interactions or backbone−backbone interactions tend to be less
impacted.
Overall, we observe that, for the interactions that were already

attractive/repulsive in sOPEPv1, two-thirds (62/93) are more
permissive at short distances with a smaller value of gR0 in
sOPEPv2. These interactions are mainly between apolar/apolar
residues (such as ILE−ILE, ILE−LEU, or LEU−VAL), between
pairs of aromatic residues (like PHE−PHE, PHE−TRP, or
PHE−TYR) and between some pairs of oppositely charged
residues (ASP−ARG, GLU−LYS), as shown in Figure S4. For
their part, attractive/repulsive interactions that are less
permissive in sOPEPv2 occur mainly between polar/polar
residues (like ASN−GLN or GLN−TYR) or between polar/
apolar residues (like MET−GLN or HIS−PRO), as shown in
Figure S5. For the interactions using the repulsive formulation in
sOPEPv1, shown in Figure S6, we observe that sOPEPv2 is less
permissive at shorter distances; energies obtained for r values of
2 and 2.5 Å are higher using sOPEPv1 for only 30(/117) and
31(/117) pairs, respectively. These interactions involve mainly
the small polar residue SER, with polar and charged residues
(like ASN−SER or GLN−SER) and the small polar residue
THR (like THR−TYR), as well as the positively charged
residues LYS, ARG, and, depending on the pH, HIS (like ARG−
ARG, LYS−ARG, or HIS−LYS).

Impact on Structure Prediction. In order to simplify the
following discussion, we focus on the results associated with
sOPEP1/Lib1 (Lib1/sOPEPv1) and sOPEP2/Lib2 (Lib2/
sOPEPv2). Results for the other studied combinations (Lib1/
sOPEPv2 and Lib2/sOPEPv1) are all presented in Tables S2,
S3, and S4.

The Parametrization Ensemble.We first consider the impact
of sOPEP reoptimization on the 25 protein target sequences
retained in the parametrization ensemble (see Table S2 for
details), using either Lib1 or Lib2. Results for this ensemble are
presented as the left bar of each panel in Figure 5. Overall, one
notes an improvement inmodel quality moving from sOPEP1 to
sOPEP2 and an improvement in model quality moving from
Lib1 to Lib2. This was expected due to the optimization
protocol.

Figure 4. Improvements in the number of unsolved inequalities during
the optimization protocol. For each optimization step (x-axis), the
improvements are presented as the additional fraction in the number of
unsolved inequalities over the previous optimization step.
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Considering the best rank only (TOP1) (Figure 5, panel A),
out of 25 targets, the optimization increases the number of
targets having native and near-native conformations from 2
(8%) and 11 (44%) up to 6 (24%) and 12 (48%), respectively,
using Lib1. Using Lib2, this increases up to 7 (28%) and 13
(52%). The combined impact of sOPEPv2/Lib2 leads to a
decrease by more than a factor of 2 in the number of targets with
non-native predictions, from 12 (48%) to 5 (20%) targets. The
average CAD-CG (Figure 5, panel D) increases from 0.605 ±
0.038, slightly above the near-native threshold (0.6), up to 0.630
± 0.035, well into the near-native interval ([0.6, 0.65]).
Considering the best in TOP5 prediction, presented in panel C

of Figure 5, the same trends are observed. For sOPEP1/Lib1, six
(24%) targets have a native prediction in the TOP5 and six
(24%) have only non-native predictions in the TOP5. For
sOPEP2/Lib2, nine (36%) targets have a native prediction in
the TOP5 and only one (4%) target has only non-native
predictions (1jjs; see Table S11 and the discussion). The

average CAD-CG of the best in five predictionspanel F
slightly increases from 0.626 ± 0.038 up to 0.646 ± 0.030.
Finally, panels B and E present an analysis over the f ive lowest

energy (TOP5) predictions. Using sOPEP1/Lib1, only 12% of
the predictions in the TOP5 are native, while 48% are non-
native. With sOPEP2/Lib2, the fraction of native predictions in
the five lowest-energy structures for the parametrization targets
increases to 24%, while the number of non-native predictions
decreases to 30%. The average CAD-CG values increase from
0.603± 0.034, slightly above the near-native threshold (0.6), up
to 0.623 ± 0.031, corresponding to the near-native definition.
In summary, for the parametrization ensemble, not only does

the optimization make it possible to generate better models
among the TOP5, but these are also of better quality on average.
sOPEP2 outperforms sOPEP1, Lib2 outperforms Lib1, and
there is an added value in combining sOPEP2 and Lib2.

The Validation (G/IC) Ensemble. As shown in Figure 5, the
transferability of the improvements observed for the para-

Figure 5. Classification of PEP-FOLD predictions and average CAD-CG of PEP-FOLD predictions. x-axis: name of the proteins’ sets. Param. G/IC,
Vali. G/IC, and Vali. G/CC refer to the parametrization, the validation G/IC, and the validation G/CC set containing 25, 39, and 48 proteins,
respectively. Bar widths are proportional to the number of proteins of the set. Left side: classification of PEP-FOLD predictions. The native, near-
native, and non-native classifications are shown in green, yellow, and red, respectively. For each set, the four columns represent from left to right the
original library/original potential, the original library/reoptimized potential, the new library/original potential, and the new library/reoptimized
potential, respectively. Panels A, B, and C: fraction of proteins per class considering the lowest energy model only (TOP1), the five lowest energy
models (TOP5), and the best CAD-CG in the TOP5, respectively. Right side: average CAD-CG of 3D predictions. For each set, the four columns
represent from left to right the original library/original potential (light orange), the original library/reoptimized potential (light blue), the new library/
original potential (orange), and the new library/reoptimized potential (blue), respectively. The CAD-CG associated with the near-native and native
classification are shown, respectively, in yellow and green (y-axis).
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metrization ensemble to the 40 protein targets of the validation
(G/IC) ensemble is obvious (details regarding this ensemble are
presented in Tables S3, S8, and S12).
Considering only the lowest energy model, panels A and D,

using sOPEP1/Lib1, zero (0%) of the lowest-energy structures
correspond to the native state of a target, with 18 (45%)
classified as near-native and 22 (55%) as non-native. With
sOPEP2/Lib2, 13 (33%) of the generated lowest energy
structures correspond to a native state, 14 (35%) are near-
native, and only 13 (33%) are non-native. This is a clear
improvement. The average CAD-CG is 0.589 ± 0.048 for
sOPEP1/Lib1, a score corresponding to the non-native
classification. Using sOPEP2/Lib2, it increases up to 0.620 ±
0.049, well above the near-native threshold of 0.6. As before,
sOPEP2/Lib2 gives the best results among the various
combinations of force-field/library of fragments.
Considering the best in TOP5 prediction, panels C and F, and

using sOPEP1/Lib1, 11 (28%) sequences have at least one
native structure among the prediction with the lowest five
energies and 17 (43%) have only non-native among those. With
sOPEP2/Lib2, 16 (40%) sequences have a predicted native
structure among the TOP5 and only 10 (25%) have only non-
native structures among the TOP5. The associated CAD-CG
averages are of 0.613 ± 0.056, corresponding to the near-native
class, and of 0.639± 0.048, closer to our native threshold of 0.65.
The only target with a native prediction in the TOP5 with
sOPEP1/Lib1 but only non-native prediction with sOPEP2/
Lib2 is 5y22 (see the discussion).
Finally, considering the f ive lowest energy (TOP5) predictions,

panels B and E, 10% of the predictions in the TOP5 are in the
native class while 52% of the predictions in the TOP5 are non-
native using sOPEP1/Lib1, whereas using sOPEP2/Lib2 almost
triples the fraction of native predictions in the TOP5, to 28%,
while the number of non-native predictions in the TOP5
decreases to 41%.
In summary, a clear improvement is observed for the targets

that were incorrectly ranked using sOPEP1/Lib1.
The Validation (G/CC) Ensemble. We now look at the 50

protein targets of the validation (G/CC) ensemble that were
correctly generated and ranked using sOPEP1/Lib1. Results for
this target ensemble are presented in Tables S4, S9, and S13.
Overall, the results correspond to the expectation of a

preserved performance. This is observed in terms of the lowest
energy prediction, panels A and D of Figure 5, for which the
lowest energy prediction is native for 44 (88%) protein targets
and non-native for zero (0%) protein targets using sOPEP1/
Lib1, while it is native for 44 (92%) targets and non-native for 1
structure (1rzs) but with a CAD-CG of 0.597, i.e., very close to
near-native with a CAD score, using sOPEP2/Lib2. The average
CAG-CG is 0.686± 0.050 with sOPEP1/Lib1 with a very slight
improvement, at 0.699 ± 0.049, for sOPEP2/Lib2.
Considering the best in TOP5 prediction, the results are very

similar for all potential/library pairs with, for example, 0.709 ±
0.048 for sOPEP1/Lib1 and 0.716 ± 0.047 for sOPEP2/Lib2.
The same is observed considering the f ive lowest energy (TOP5)
predictions with 76% of the predictions in the TOP5 native and
only 3% non-native for sOPEP1/Lib1, and 83 and 2% of the
predictions are, respectively, native and non-native for sOPEP2/
Lib2.
Overall, improving predictions of targets correctly predicted

by sOPEP1/Lib1 does not lead to a deterioration for those
correctly predicted: sOPEP2/Lib2 leads to similar or slightly

better predictions than sOPEP1/Lib1 for almost all protein
targets tested.

The NG Ensemble. Using our classification procedure of the
targets, described in the Selection of Protein Targets section, we
identified a series of 23 proteins for which sOPEP1/Lib1 is
unable to generate a native (or near-native) prediction
(ensemble NG), irrespective of its energetic classification.
These proteins are mainly longer sequences (19 out of 23 are
between 50 and 70 amino acids, i.e., longer than the original
PEP-FOLD maximal size of 50) dominated by β-sheet
secondary structures (10, 9, and 4 out of 23 are, respectively,
β-protein, α/β-protein, and α-protein).
Modifications at the level of the library of fragments and the

potential have no impact on the PEP-FOLD ability to generate
native predictions for these targets; as for sOPEP1/Lib1,
sOPEP2/Lib2 only generates non-native predictions. In order to
better understand where the limitations lie and whether they are
related to the discrimination by sOPEPv2, we compute the
energy of the experimental structure, following a minimization.
The energy of the experimental structure is then compared to
that of the 3D predictions, as shown in Table 1. For 14
sequences out of 23, the energy of the native structure is lower
than that of the best prediction and, for one additional sequence,
the energy of the native structure is in the five lowest energy
predictions. A more thorough analysis of the significance of
these results is provided in the PEP-FOLD Limitations section.

Table 1. Energy Ranking for Targets in the NG Ensemblea

NG target
LowE energy
(kcal/mol)

native energy
(kcal/mol)

native
rank

1gyf (α/β, 62) −138 −184 0
1nd9 (α/β, 49) −132 −98 501
1ne3 (β, 68) −137 −149 0
1qxf (β, 66) −170 −183 0
1vpu (α, 45) −111 −40 501
1y2y (β, 68) −149 −38 501
2cw1 (α/β, 65) −180 −196 0
2do3 (β, 69) −163 −213 0
2dy8 (α/β, 69) −158 −173 0
2eqi (β, 69) −127 −184 0
2gdl (α, 31) −58 −21 501
2jrr (β, 67) −147 −169 0
2jtv (α/β, 65) −150 −182 0
2kaf (α/β, 67) −176 −218 0
2l8d (β, 66) −140 −208 0
2lhc (α, 56) −161 −111 231.5
2lss (α/β, 70) −162 −251 0
2m2l (α/β, 67) −147 −138 4.5
2m4y (β, 56) −128 −70 493.5
2m7o (α/β, 70) −191 −205 0
2mck (α, 69) −149 −127 202.5
2mdu (β, 29) −76 −70 18.5
2xk0 (β, 69) −158 −174 0

aLowE and Native Energy: energy of the lowest energy model
generated using sOPEP2/Lib2 and experimental structure using
sOPEPv2, respectively. Native Rank: ranking of the experimental
structure compared to models generated using sOPEP2/Lib2. PEP-
FOLD predictions are ordered from 1 to 500 in order of increasing
energy; rank 0 means that the experimental structure has a lower
energy than all predictions, while a rank of 501 means the
experimental structure has a higher energy than all predictions.
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Improvements. To better understand the underlying effects
of revised PEP-FOLD, we focus on the protein targets, among all
ensembles, that see their lowest energy prediction change
classification when going from sOPEP1/Lib1 (Lib1/sOPEPv1)
to sOPEP2/Lib2 (Lib2/sOPEPv2). All predictions using
sOPEPv2/Lib2 are available in the Supporting Information. A
total of 32 targets are shifted to a better class, as shown in Table

2: 14 go from non-native to near-native, 12 go from near-native
to native, and 6move directly from non-native to native. Only six
target sequences move down in classification with sOPEP2/
Lib2, with respect to the sOPEP1/Lib1 as shown in Table 3:
three move from native to near-native and three from near-
native to non-native. When analyzing the best structure in the
five lowest energy (TOP5) predictions, we do however note the

Table 2. Proteins for Which the Classification of the Lowest Energy Prediction (TOP1) Is Improveda

aThe notations are identical to those of Table 1. Columns 2 and 3 present the results for the lowest energy prediction and the best prediction in the
TOP5 for sOPEPv1/Lib1, while columns 4 and 5 present the same results for sOPEPv2/Lib2. Each column presents the quality assessment in
terms of CAD-CG and, in parentheses, BC-WDC. Color coding: CAD-CG scores corresponding to the native, near-native, and non-native
classification are shown, respectively, in green, yellow, and red.

Table 3. Targets for Which the Classification of the Lowest Energy Prediction (TOP1) Is Deteriorateda

aThe notations are identical to those of Table 2.
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presence of at least a native prediction for 2m8j and at least a
near-native prediction for the five others (1g2h, 2l4j, 1qpm, 1rzs,
and 2wqg). The classification of the best prediction in the TOP5
deteriorates for only two out these six targets (1qpm and 2wqg).
In terms of secondary structure, out of a total of 60 α-targets,

13 are improved (1zv6, 2dt6, 2lma, 1ify, 1q1v, 1zrj, 1zwv, 2bn6,
2coo, 2jof, 2k2a, 2msu, and 2cp9) and 3 are deteriorated (1g2h,
1rzs, and 2wqg). Out of the 31 β-targets, 12 of them move up in
classification (1b03, 1i6c, 1spw, 2l92, 2mwf, 2ysb, 2jtm, 2k57,
2ysh, 2zaj, 1wr3, and 1wr4) and 2 of them (2l4j and 2m8j) move
down. Finally, out of the 21 α/β-targets, 7 of them see improved
predictions (2fmr, 1k8b, 1pgb, 2a63, 2kt2, 2l4m, and 2v0e) with
one of them (1qpm) deteriorating.
Overall, sOPEP2/Lib2 generates improved predictions across

targets, irrespective of length: out of the 62 targets below 50
amino acids, 16 targets are improved (1b03, 1i6c, 1spw, 2l92,
2lma, 2mwf, 2ysb, 1ify, 1zrj, 2bn6, 2jof, 2msu, 2ysh, 2zaj, 1wr3,
and 1wr4) and only 2 targets move down in classification (2l4j
and 2m8j). Similar results are obtained for longer sequences
with 15 targets (1zv6, 2dt6, 2fmr, 1k8b, 1pgb, 1q1v, 1zwv, 2a63,

2coo, 2jtm, 2k2a, 2k57, 2kt2, 2l4m, 2v0e, and 2cp9) out of the 50
between 50 and 70 amino acids moving to a higher classification
and predictions for 4 targets (1g2h, 1qpm, 1rzs, and 2wqg)
deteriorating.
The lowest energy prediction for both sOPEP1/Lib1 and

sOPEP2/Lib2 for the six sequences that move from non-native
to native class are presented in Figure 6. Improved predictions
can be subtle, introducing a turn or perfecting the alignment, but
they can also be fundamental, correcting badly predicted
secondary structure, as shown by these examples.
For 1pgb, the sOPEP1/Lib1 prediction only identified two

out of the four β-strands and the alignment of the α-helix and β-
sheet is off. This prediction has a CAD-CG of 0.551 and a BC-
WDC of 0.452. The prediction with sOPEP2/Lib2 correctly
identifies the four β-strands and their alignment is fairly well
reproduced, although a small deviation in the alignment of the α-
helix remains. The new prediction has a CAD-CG of 0.664 and
BC-WDC of 0.898. For 1spw, the sOPEP1/Lib1 prediction
incorrectly predicts a small helix around residues 34−36, and
while both small β-strands are present, their alignment is

Figure 6. Lowest energy predictions for proteins going from non-native to native predictions. The left and right columns show the results for the
original library with the original potential, in orange, and the new library with the new potential, in blue, respectively. The experimental structure is
shown in gray. The structures are aligned on Cα of residues of the well-defined core, as presented in the Protein Data Bank. Pictures were generated
using Pymol,57 and secondary structure elements were determined using STRIDE.58

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c01293
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

L

https://pubs.acs.org/doi/10.1021/acs.jctc.1c01293?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01293?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01293?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01293?fig=fig6&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c01293?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


incorrect. For this prediction, the CAD-CG is 0.590 and the BC-
WDC is 0.232. sOPEP2/Lib2 correctly reproduces the
secondary structure elements and their alignment, leading to a
CAD-CG of 0.683 and a BC-WDC of 0.841.
While almost all secondary structure motifs for 1zwv are

correctly predicted with sOPEP1/Lib1, their alignment is
completely wrong, leading to a CAD-CG of 0.594 and a BC-
WDC of 0.335. It is correctly predicted with sOPEP2/Lib2,
leading to a CAD-CG of 0.668 and a BC-WDC of 0.877.
sOPEP1/Lib1 overstabilized α-helical structures for 2bn6,

predicting a single straight helix as its best structure leading to
low CAD-CG (0.585) and BC-WDC (0.027) scores. sOPEP2/
Lib2 correctly generates a turn, breaking the two α-helices, with
the best predicted structure showing a CAD-CG of 0.685 and a
BC-WDC of 0.865.
Finally, for 2fmr, sOPEP1/Lib1 has mostly the correct α-

helical content, but the β-sheet content is seriously under-
estimated, leading to an overall alignment that is off, as shown by
the low CAD-CG (0.562) and BC-WDC (0.392). sOPEP2/
Lib2 correctly identifies 100% of the α-helical residues and 75%
of the β-sheet residues, as well as the overall alignment with a
CAD-CG of 0.680 and a BC-WD of 0.939.
The predictions’ quality assessment is, in addition to the

CAD-CG score, computed with the BC score53 defined by the
residues of the well-defined core (BC-WDC). The results are
presented in Figure S2 for the lowest energy prediction (panel
A), the five lowest energy predictions (panel B), and the best
prediction in the five lowest energy predictions (panel C). The
improvements observed in terms of CAD-CG are also
compatible with the observed trend in terms of BC-WDC. For
the lowest energy prediction, the BC-WDC goes from 0.347 ±
0.448 to 0.502 ± 0.380, from 0.330 ± 0.346 to 0.502 ± 0.380,
and from 0.624± 0.400 to 0.707± 0.350 for the parametrization
G/IC, the validation G/IC, and the validation G/CC ensemble,
respectively. For the five lowest energy predictions, the BC-
WDC goes from 0.327 ± 0.290 to 0.445 ± 0.345, from 0.327 ±
0.290 to 0.445± 0.345, and from 0.626± 0.361 to 0.721± 0.275
for the parametrization G/IC, the validation G/IC, and the
validation G/CC ensemble, respectively. Finally, the BC-WDC
of the best prediction in the five lowest energy predictions goes
from 0.601 ± 0.274 to 0.652 ± 0.317, from 0.601 ± 0.274 to
0.652 ± 0.317, and from 0.810 ± 0.283 to 0.827 ± 0.193. These
observations are compatible with those obtained for the CAD-
CG.
Comparison. We now compare the predictions from

sOPEP2/Lib2 to three state-of-the-art machine learning
techniques: APPTest server,19 the RaptorX server,5−7 and
AlphaFold2.9

APPTest is limited to sequences of 40 amino acids or less. For
the very small peptides, 25 amino acids or less, the results with
this tool are very good with an average CAD-CG of 0.698 ±
0.084. In the tested targets, the score is mainly dragged down by
1b03, for which the β-sheet secondary structure is not correctly
reproduced (CAD-CG of 0.507), and 1s4j, which is predicted as
almost fully extended (CAD-CG of 0.532). For larger targets
between 26 and 40 amino acids, the prediction quality is
decreased compared to the smaller targets with an average CAD-
CG of 0.634 ± 0.075. As shown in panel A of Figure 7, this is
mainly due to the β-sheet targets (CAD-GG score: 0.612 ±
0.077), as α-helical targets are very well predicted (CAD-GG
score: 0.722 ± 0.046). This is caused by a slight shift in the
hydrogen bond network between the β-strands, leading to
incorrect prediction of side chain/side chain interactions,

captured by the CAD score. Overall, panels A and B of Figure
7 show that APPTest does better on smaller, α-helical targets,
while PEP-FOLD does better for larger, β-sheet targets, as it
predicts the correct hydrogen bond network between the
strands. Only two sequences from the NG ensemble are below
the APPTest threshold of 40 amino acids: 2gdl and 2mdu.
Similarly to PEP-FOLD using sOPEP2/Lib2, APPTest has
trouble with these two targets with a CAD-CG of 0.534 and
0.592, respectively. When considering the best prediction in the
TOP5, we note that the classification for six targets is improved,
most notably for 2luf and 2mwf that go from the near-native to
the native prediction (Table S13).
For the RaptorX server, a clear distinction of strengths and

weaknesses, both in terms of secondary structure and length,
emerges with respect to sOPEP2/Lib2. Panel A of Figure 7
shows that the predictions for α-targets of the RaptorX server are
slightly better than those obtained using sOPEP2/Lib2 (average
CAD-CG of 0.688 ± 0.082 vs 0.676 ± 0.059), while sOPEP2/
Lib2 predictions are more reliable for β-targets (average CAD-
CG of 0.647 ± 0.055 for sOPEP2/Lib2 vs 0.559 ± 0.082 for the
RaptorX server). In terms of target length, panel B of Figure 7
shows that, for smaller targets, between 26 and 50 amino acids,
sOPEP2/Lib2 gives better predictions than RaptorX (average
CAD-CG of 0.680 ± 0.063 vs 0.612 ± 0.108), while RaptorX
predictions are better for longer targets, between 50 and 70
amino acids (average CAD-CG of 0.635 ± 0.049 vs 0.665 ±
0.094). For the NG ensemble, RaptorX server predictions are
also below its average over the other sequences: 9 of the 23

Figure 7. Average CAD-CG score for the TOP1 prediction using five
prediction approaches. Panel A: results when targets are classified by
structural class, with respectively 60, 32, and 21 proteins in the α, β, and
α/β categories. Panel B: results when targets are classified by length,
with respectively 17, 48, and 50 targets with less than 26 amino acids,
between 26 and 50 amino acids, and between 51 and 70 amino acids. Of
note, PEP-FOLD is usually limited to up to only 50 amino acids. The
RaptorX server minimum accepted length is 26 amino acids. The
APPTest does not consider sequences with more than 40 amino acids.
The CAD-CG associated with the near-native and native classification
are shown, respectively, in yellow and green (y-axis). Protein targets
from the NG ensemble are excluded for this figure.
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predicted targets in the NG ensemble are classified as native,
with 1 near-native and 13 non-native. Focusing on the best
prediction in the TOP5, we note only two targets for which the
classification is improved: 2ysi (from non-native to native) and
2jrr (from non-native to near-native) (Table S13).
For its part, AlphaFold2 predictions are excellent for all

secondary structure types, with an average CAD-CG of above
0.75 for α-, β-, and α/β-targets (Figure 7A) and for all protein
lengths, with an average CAD-CG of above 0.70 for targets
below 26 amino acids and above 0.75 for targets between 25 and
50 amino acids and between 50 and 70 amino acids (Figure 7B).
For the smallest targets tested, the average of AlphaFold2 is only
dragged down by 1b03, for which the hydrogen bond network of
the β-sheet is shifted, leading to incorrect side chain/side chain
interactions and a CAD-CG in the non-native realm (0.583) and
1s4j, which is predicted as a small α-helix as opposed to the
native structure with two turns and no secondary structure
elements. Finally, AlphaFold2 is the only method tested here
that is able to correctly predict the overwhelming majority of the
targets in the NG ensembles. Only four are incorrectly predicted
by AlphaFold2, 1nd9, 1vpu, 1y2y, and 2gdl with a CAD-CG of,
respectively, 0.558, 0.534, 0.494, and 0.595. For AlphaFold2,
considering the best prediction inside the TOP5 does change
the results with a single target, 2kya, that goes from the non-
native to the near-native class (Table S12).

■ DISCUSSION
PEP-FOLD20−22 is a quick, simplified, and successful approach
to peptide structure prediction that is freely available as a Web
server.59 It is specialized in the structure prediction of small
peptides up to 50 amino acids. In this study, we question PEP-
FOLD applicability from 50 amino acids to 70 but still keep the
focus on relatively short sequences, as these present a unique
challenge compared to the prediction of larger proteins.14

In this study, we present improvements to two of the core
aspects of PEP-FOLD: an updated library of fragments (Lib2)
and a reoptimized version of sOPEP (sOPEPv2). sOPEPv2
introduces a new formulation for non-bonded interactions, and
it is parametrized by using a self-consistent iterative process,
using a philosophy similar to that developed for optimizing
OPEP41 and sOPEPv1.22 The parametrization is designed to
maximize the discrimination on an ensemble of decoys classified
using simple criteria on the CAD score, with no further
information on the distributions of interatomic distances. The
improvement associated with the update of the library of
fragments alone appears mainly limited to the targets below 50
amino acids, while the generalized formulation of the non-
bonded interactions leads to improvements across all peptide
lengths tested, as can be seen in Table S5.
Furthermore, despite its simplicity (discrete assembly, coarse-

grained potential, etc.), the updated version of PEP-FOLD
presented here shows improvements compared to state-of-the-
art machine learning approaches such as APPTest and RaptorX.
Dependence on Target Size and Secondary Structure.

sOPEP2/Lib2, with an updated fragment library and reopti-
mized potential, improves the accuracy of predicted structures
for targets of 50 amino acids or less compared to sOPEP1/Lib1.
The average CAD-CG goes from 0.656 to 0.675, placing most of
these proteins in the native class, as we define it, while the
average BC-WDC goes up from 0.519 to 0.596 (shown in Figure
S3 and Table S5). In spite of the introduction of longer targets in
the learning set, results for smaller targets do not deteriorate but
improve in terms of both CAD-CG and BC-WDC.

As expected with a focus on longer sequences, sOPEP2/Lib2
delivers a pronounced improvement for peptides between 50
and 70 amino acids of the results in terms of CAD-CG, from
0.614 to 0.635, placing most of these proteins in the near-native
class, with the average BC-WDC moving from 0.373 to 0.608.
This improvement, that does not, for such sizes, bring PEP-
FOLD to the level of performance of an approach such as
AlphaFold, strongly suggests, however, that the generalized
formulation proposed here is an effective direction. For such
large sizes, other aspects of PEP-FOLD can limit the effective
generation of accurate models, namely, the sequential assembly
process in a discrete space.
Considering the secondary structure class of the targets (see

Figure S7 and Table S6), α-proteins tend to be more often
correctly predicted compared to β-proteins and α/β-proteins.
This trend is observed for both sOPEP1/Lib1 and sOPEP2/
Lib2, although with more important improvements in terms of
tertiary structure, indicated by the CAD-CG and BC-WDC S7,
for the latter compared to the former. The fact that α-helices are
correctly predicted compared to other secondary structure
classes is most likely a consequence of the PEP-FOLD assembly
process rather than the force field itself.
Indeed, because α-helices are local in structure, correctly

predicted structural alphabet letters associated with α-helices
can therefore be immediately identified as favorable, during the
amino acid by amino acid model generation process, whereas
this is not possible for β-strands. More specifically, the lowest-
energy structures predicted by sOPEP1/Lib1 and sOPEP2/
Lib2 reproduce 93 and 96% of the experimental α-structures,
respectively, for α-targets (shown in Figure S8).
By definition, β-targets contain no experimental α-helix. This

feature is perfectly reproduced with PEP-FOLD: the folds
contain no α-helix; hence, there is a 100% success rate for
predictions. For α/β-targets, the predicted amount of correct
experimental α-structure is also very high, with 94% for both
sOPEP1/Lib1 and sOPEP2/Lib2, respectively.
The prediction of β-sheets is trickier. Indeed, slight deviations

in the hydrogen bond network between strands can lead to
completely new interactions between the side chains. Compared
to other similarity scores, the CAD-CG score captures a small
mismatch between β-strands very well.48 With this in mind, we
can clearly see improvements in the prediction of β-sheets with
sOPEP2/Lib2. For the β-proteins, the average CAD-CG goes
from 0.623 to 0.647 (shown in Figure S7) and the average
fraction of β-sheet of the experimental structure correctly
modeled increases from 0.817 to 0.871% (shown in Figure S8).
For the α/β-proteins, the change is even more noticeable with
the CAD-CG going from 0.597 to 0.625 and the average of
reproduced β-sheet content from the experimental structure
going from 45 to 78% for sOPEP1/Lib1 and sOPEP2/Lib2,
respectively. Beyond the reoptimized potential, the use of the
new library of fragments also contributes to this improvement, as
the number of fragments associated with β-sheet letters of the
SA goes from 17 to 28. This leads to more residues adopting the
correct β-sheet secondary structure, as shown in Figure S8, with
both sOPEPv2 and, to a lesser extent, sOPEPv1 when using
Lib2.

PEP-FOLD Limitations. In spite of the overall prediction
improvements realized with the revision of the sOPEP potential,
we identify a few proteins for which PEP-FOLD is unable to
make a correct prediction within the five lowest energy
predictions.
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One of these proteins, 1jjs (α, 50 amino acids), is in the
parametrization ensemble. For this target, the use of sOPEPv2/
Lib2 results in extending two of the three α-helices (from
residue 5−13 and 19−31 and compared to 2−14 and 25−31)
and in predicting a fourth helix between residues 45−49.
Additionally, the relative positioning of the first helix with
respect to the two others is off. A near-native structure (CAD-
CG of 0.600 and BC-WDC of 0.566) is however present just
outside the TOP5, at rank 8, as shown in Table 4.

In the validation G/IC ensemble, PEP-FOLD is unable to
identify a near-native or native prediction among the five lowest
energy structures for 10 out of the 40 targets, five of which are β-
protein (1ed7, 1k91, 2m6o, 2mdj, and 2mi6), two are α/β-
protein (1f0z, 1n87), two are α-protein (2kya, 5y22), and one
has no secondary structure elements (1s4j). To identify the
source of this difficulty, we compute the energy of the
experimental structure with the reoptimized potential after
relaxation and compare its ranking with sOPEP2/Lib2
predictions. For 4 of these 10 sequences (1ed7, 1f0z, 1k91,
and 2mi6), the experimental structure ranks before the best
prediction, and for 2 others (1n87 and 2m6o), the experimental
structure ranks in the five lowest energy predictions, as
presented in Table 4. For 1k91 and 1n87, a near-native
prediction is present just outside the TOP5 at rank 10 for both
(see Table 4).
We now have a look at the remaining sequences. For 1s4j,

sOPEPv2/Lib2 predicts a small β-hairpin, similarly to
sOPEPv1/Lib1 instead of the two turns and no secondary
structure elements of the native structure. For 2kya, the SVM
predicts the position of the α-helix around residues 24−33, while
the experimental α-helix is around residues 12−28 and it also
predicts a nonexisting β-strand around residues 11−20. Finally,
for 5y22, sOPEPv2/Lib2 predicts that the second half of the α-
helix, between residues 3 and 15 in the experimental structure,
instead forms a small β-hairpin. With sOPEPv1/Lib1, the
second half of the experimental α-helix is instead mainly
disordered, except for the fourth prediction which correctly
predicts the correct α-helix (see Table S12). For sOPEPv2/

Lib2, the correctly predicted structure is not present in the five
lowest energy predictions. 5y22 is the only case for which the
results in terms of the best prediction in the TOP5 is
deteriorated by using sOPEPv2/Lib2 compared to sOPEPv1/
Lib1.
Similarly to what we observed for 2kya, we find some

limitation for the SVM on the targets from the Not Generated
(NG) ensemble, as we identify multiple incorrect secondary
structure predictions made by the SVM. For example, in 2gdl (α,
31 aa), the SVM predicts the localization of the α-helix around
residues 21−29, instead of around residues 5−18 in the
experimental structure. For 1vpu (α, 45 aa), the experimental
helix around residues 23−28 is shifted in the SVM predictions to
around residues 26−35, in addition to the helix between
residues 39 and 43 not being identified by the SVM. Finally, for
2lhc (α, 56 aa), two of the three experimental α-helices, between
residues 9 and 14 and residues 39 and 51, are identified as β-
sheet by the SVM.
Together, these results show that the updated library and

potentials are able to identify correctly the native structure of
most of the problematic sequences. This confirms that the
simplified representation adopted here, both in terms of
structure, including the coarse-graining of the side chain, and
interactions, manages to capture the essential features
responsible for folding.
The results also show that, for most sequences, the SVM

approach to structure prediction excels at generating the
relevant structures, both secondary and tertiary, that can then
be classified using the energy model. With the current structural
alphabet, however, this approach can fail for a relatively small
subset of sequences, particularly for sequences where the tertiary
structure is essential to enforce the secondary structure. While a
more detailed analysis of these cases could allow us to better
understand the delicate balance between these two levels of
organization for some sequences, the SVM remains a powerful
tool for exploring the structures of peptidic sequences.

■ CONCLUSION
Small peptides can play an important role in the development of
novel therapeutic approaches10,11 and represent a unique
challenge compared to larger proteins. Indeed, the same
amino acid sequence can adopt very different structures whether
it is a peptide or a fragment of a larger protein.4,14 In this work,
we present improvements to the popular, freely available
online,59 PEP-FOLD method for small peptide structure
predictions and extend its application from sequences of 50
amino acids to 70.
These improvements focus on two aspects of PEP-FOLD.

First, using a new superimposition and clusterization scheme, we
update the PEP-FOLD library of fragments associated with each
letter of the structural alphabet (SA). This leads to an overall
decrease in the total number of fragments, from 182 to 166 but
with a larger number of fragments associated with β-sheet letters
(from 17 to 28). Second, the parameters of the sOPEP force
field, used in PEP-FOLD for prediction classification during
(and after) greedy assembly of the fragments, are reoptimized
using an iterative self-consistent process. sOPEP2/Lib2 leads to
improved predicted structures for targets found problematic
with sOPEP1/Lib1, both in terms of the lowest energy and five
lowest energy predictions, while maintaining the quality for
targets already correctly predicted by sOPEP1/Lib1. While
PEP-FOLD is the only approach of this study not going to the
all-atom level and using a discrete space search, sOPEP2/Lib2

Table 4. Ranking of Incorrectly Predicted Targetsa

native first non-native prediction

target rank CAD-CG (BC-WDC) rank

1s4j (coil, 13) 501 0.610 (−0.525) 122
5y22 (α, 22) 236.5 0.724 (0.977) 61
2kya (α, 34) 2.5 0.611 (0.017) 119
1k91 (β, 37) 0 0.601 (−0.059) 10
1ed7 (β, 45) 0 0.602 (0.769) 102
2m6o (β, 48) 4.5 0.621 (0.877) 17
1jjs (α, 50) 158.5 0.600 (0.566) 8
1n87 (α/β, 56) 3.5 0.602 (0.871) 10
2mdj (β, 56) 217.5 0.613 (−0.445) 122
2mi6 (β, 62) 0 0.612 (0.693) 13
1f0z (α/β, 66) 0 0.600 (0.867) 77

aFor each target incorrectly predicted within the five lowest energies,
the ranking of the experimental structure and the quality assessment
in terms of CAD-CG(BC-WDC) and ranking of the first non-native
prediction are presented, respectively, for columns 2−4. PEP-FOLD
predictions are ordered from 1 to 500 in order of increasing energy;
rank 0 means that the experimental structure has a lower energy than
all predictions, while a rank of 501 means the experimental structure
has a higher energy than all predictions.
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predictions compare well with other state-of-the-art protein/
peptide structure prediction techniquesthe recently devel-
oped APPTest19 and RaptorX5−7but are behind the recently
proposed AlphaFold2.9

Therefore, with its overall high reliability for shorter
sequences (50 amino acids and less), the original approach
retained by PEP-FOLD, including the use of a structural
alphabet, of a sequential growth algorithm, and of a rich coarse-
grained potential optimized using a very general classification
scheme, this improved version of PEP-FOLD offers a solid
prediction tool that can provide physical insights into the folding
process. The analysis presented with this revised parametriza-
tion shows, in particular, the importance of better understanding
the link between tertiary and secondary structure, particularly
for these smaller fragments, but also the strength of the local
approach retained here. As updated, sOPEP2/Lib2 remains,
therefore, an important tool for structure prediction of short
sequences. In addition, the quality of the structure prediction
provides a strong support for the simplified sOPEP2 potential,
developed here, that could serve as a solid basis for dynamical
studies, unreachable by purely IA folding techniques.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01293.

Detailed comparison for all tested targets for all tested
prediction techniques (ZIP)
PDB predictions (ZIP)

■ AUTHOR INFORMATION
Corresponding Authors
Normand Mousseau − Départment de Physique, Université de
Montréal, Montréal, QC H3C 3J7, Canada;
Email: normand.mousseau@umontreal.ca

Pierre Tuffery − Université de Paris, INSERM U1133, CNRS
UMR 8251, F-75205 Paris, France; orcid.org/0000-0003-
1033-9895; Email: pierre.tuffery@u-paris.fr

Author
Vincent Binette − Départment de Physique, Université de
Montréal, Montréal, QC H3C 3J7, Canada

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.1c01293

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
V.B. is grateful to the Fonds de recherche du Québec − Nature
et technologie through a postgraduate fellowship and to
MITACS for a travel grant. This program is partially supported
through a Discovery Grant of the Natural Sciences and
Engineering Research Council of Canada to Normand
Mousseau. This research was made possible through generous
computer allocations from Calcul Québec (www.calculquebec.
ca) and Compute Canada (www.computecanada.ca).

■ REFERENCES
(1) Dill, K. A.; MacCallum, J. L. The protein-folding problem, 50 years
on. science 2012, 338, 1042−1046.

(2) Goodwin, S.; McPherson, J. D.; McCombie, W. R. Coming of age:
ten years of next-generation sequencing technologies. Nat. Rev. Genet.
2016, 17, 333.
(3) Westbrook, J. D.; Burley, S. K. How structural biologists and the
Protein Data Bank contributed to recent FDA new drug approvals.
Structure 2019, 27, 211−217.
(4) Kryshtafovych, A.; Schwede, T.; Topf, M.; Fidelis, K.; Moult, J.
Critical assessment of methods of protein structure prediction
(CASP)Round XIII. Proteins: Struct., Funct., Bioinf. 2019, 87,
1011−1020.
(5) Xu, J.; Mcpartlon, M.; Li, J. Improved protein structure prediction
by deep learning irrespective of co-evolution information. Nature
Machine Intelligence 2021, 3, 601−609.
(6) Xu, J. Distance-based protein folding powered by deep learning.
Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 16856−16865.
(7) Wang, S.; Sun, S.; Li, Z.; Zhang, R.; Xu, J. Accurate de novo
prediction of protein contact map by ultra-deep learning model. PLoS
computational biology 2017, 13, No. e1005324.
(8) Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov,
S.; Lee, G. R.; Wang, J.; Cong, Q.; Kinch, L. N.; Schaeffer, R. D.
Accurate prediction of protein structures and interactions using a three-
track neural network. Science 2021, 373, 871.
(9) Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green,
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