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A B S T R A C T

The Activation–Relaxation Technique (ARTn) is an efficient technique for finding the minima and saddle points
of multidimensional functions such as the potential energy surface of atomic systems in chemistry. In this work
we detail and illustrate significant improvements made to the algorithm, regarding both preprocessing and
the activation process itself. As showcased, these advances significantly reduce ARTn computational costs,
especially when applied with ab initio description. With these modifications, ARTn establishes itself as a
very efficient method for exploring the energy landscape and chemical reactions associated with complex
mechanisms.
1. Introduction

Understanding molecular reactions and the evolution of atomic
structures is of crucial interest in modern chemistry and materials
science. This objective requires a precise knowledge of the energy
landscape associated with diffusion pathways, including the initial,
final and transition states, as well as their relative free energies, i.e.,
barrier energy and entropy.

Mathematically, for purely activated events in which energy barriers
are high compared to temperature, the initial and final states can be
assigned to a local energy minimum on the potential energy surface
(PES) of the system, whereas the transition states are assigned to a
first-order saddle point, corresponding to the highest energy point on
the minimum-energy path connecting these two minima. Once these
states are known, the kinetics of the system can be described within
the framework of the transition state theory [1,2]. The reader should
refer to the Appendix A for a better understanding of some key words
used in this work.

The challenge to identify these states is two-fold: first, finding local
points of interest; second, sampling the landscape to ensure that all the
relevant mechanisms are identified. For a chemical system composed
of 𝑁𝑎𝑡 atoms, the PES has 3𝑁𝑎𝑡 dimensions. While a local minimum
of this PES can be easily reached by any algorithm that follows the
slope in all these dimensions, saddle points are unstable along one
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particular dimension called the valley, and are therefore harder to
identify. Indeed, reaching a saddle point implies a relaxation in the
3𝑁at − 1 other dimensions and a climb along this unknown dimension
of negative curvature. The curvature is, by definition, positive around a
local minimum and does not provide information concerning the nature
and position of saddle points sitting on the ridge between two minima.
Such information can become available only beyond the inflection line
surrounding a minimum: above this line, the valleys leading to these
saddle points start to form and to dissociate (see the shoulders area
in Fig. A.7(c) of Appendix A). For all these reasons, identifying local
transition states remains a formidable task.

The Activation Relaxation Technique nouveau (ARTn) [3,4] has
demonstrated to be a very efficient and versatile approach for finding
saddle points on a PES using only local information (energy and forces).
Doing so, it addresses both challenges underlined in the previous
paragraph: the identification of local saddle point as well as, through
its unbiased search approach, the capacity to provide an extensive
mapping of the PES through fully connected activated paths. Over the
last 20 years, ARTn has been applied to a wide range of systems both to
explore their energy landscape [5–9], and to generate long-time kinetic
trajectories [10–15] when used as kinetic ART, an off-lattice kinetic
Monte Carlo algorithm with on-the-fly cataloguing. When searching
for a saddle point, a recent implementation of ARTn coupled with
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Fig. 1. The three main steps of ARTn (in pink) that find a saddle point from an initial input position 𝐗, a given random vector 𝐞̂𝐫𝐚𝐧𝐝, and a norm 𝛼 for this random push. The
lowest eigenvalue 𝜆𝑚 (𝑚 as minimum) of the Hessian matrix and its corresponding eigenvector 𝐞̂𝐦 are calculated with the Lanczos procedure. 𝐅⟂ = (𝐅 ∙ 𝐞̂)𝐞̂ is the component of the
forces 𝐅 that is parallel to the pushing direction 𝐞̂ and 𝐅⟂ = 𝐅 − 𝐅∥ is the orthogonal component.
o
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Density Functional Theory (DFT) (ARTn-DFT in the following) [16],
was shown to result in more accurate saddle points — i.e. with total
force many orders of magnitude lower — and to be computationally
less expensive than the climbing image-nudged elastic band (NEB)
method [17]. Previous work has also shown that ARTn is more efficient
than the dimer method [18] for generating a fully connected PES with
multiple saddle points search [19].

The scope of this work is to present an overview of the ARTn method
and the latest improvements on the core algorithm as well as pre-
processing strategies when running multiple-saddle-point search. These
improvements further reduce the number of energy and force evalu-
ations while keeping whole numerical accuracy. The basic structural
elements of ARTn are outlined in Section 2, while latest improve-
ments and pre-processing strategies are discussed in Sections 3 and 4,
respectively.

2. Standard Activation Relaxation Technique nouveau

The core of ARTn is based on three stages that are executed at every
step of the search until convergence is achieved:

• Evaluation of the Hessian lowest eigenvalue 𝜆𝑚 (lowest curva-
ture), i.e. the one with the most negative value, or with the small-
est value if they are all positive and its corresponding eigenvector
𝐞̂𝐦 (direction along which the curvature is the lowest);

• Uphill push, against the forces;
• Relaxation into the hyperplane perpendicular to the push.

This workflow is shown in Fig. 1 (pink blocks). The choice of the
initial push (first grey block in Fig. 1) and the possibility for searching
multiple-saddle points are, here, considered as pre-processing and post-
processing operations, respectively. Fig. 2(a) illustrates ARTn searches
on a bi-dimensional (2D) potential energy surface model.

The concept of the algorithm is simple. In practice, however, its
performances (reduced number of energy and force evaluations, numer-
ical stability, success rate and precision) rely on several numerical and
mathematical tricks.

In this section we discuss a few central elements of ARTn.

2.1. Initial uphill push

Since a local energy minimum does not provide information re-
garding the position or nature of the saddle points connected to it, by
default, ARTn generates a random push (𝐞̂𝐫𝐚𝐧𝐝) from a local minimum
to start an event search.

In the absence of strong mathematical justification, many approaches
can be used for this initial deformation: the random displacement can
be applied to a single atom, a local environment, or to the entire system
dimensions. Since, irrespective of the number of atoms involved in the
initial displacement, ARTn imposes no constraints on the atoms that
can move, all saddle points can, in principle, be found, regardless of
the initial push. In practice, however, ‘‘smart’’ choices of the initial
push improve the sampling of the saddle point. For example, global
pushes tend to oversample collective transition states often related to
soft degree of freedom. On the contrary, very local pushes tend to
2

sample transition states that only involve the breaking or formation
of few bonds (hard degree of freedom). Since activated events away
from phase transitions tend to be local in nature, typical initial random
deformation are therefore applied on local environments counting a
limited number of atoms.

While there is no formal proof that ARTn can generate an exhaustive
list of activation barriers connected to a local minimum, the random
search permits to limit the biases. In fact, it has been shown that a suf-
ficient number of random explorations generates a larger catalogue of
events than competing algorithms, while always retrieving previously
known barriers [4,12,20].

2.2. Evaluation of the lowest curvature

During this stage, the lowest eigenvalue (𝜆𝑚) and corresponding
eigenvector (𝐞̂𝐦) of the Hessian matrix are evaluated by means of
Lanczos algorithm [21] (see Appendix B). This lowest eigenvalue de-
termines if the system is below (𝜆𝑚 > 0), or above the inflection
hyperplane (𝜆𝑚 < 0). Once above this hyperplane, the initial uphill
push direction is switched to 𝐞̂𝐦. To reduce the computational cost,
in practice, if ARTn search starts in a minimum, the lowest curvature
could be computed only after few uphill pushes as the curvature is
positive near a minimum, by definition.

2.3. Uphill push

The uphill push is performed to (i) escape from the harmonic basin
surrounding the minimum and (ii) to move towards a ridge. The push
direction depends on the position of ARTn on the PES:

1. Below the inflection hyperplane, i.e., where are directions have
positive curvature, the push direction is kept constant and equal
to the initially chosen direction.

2. Above the inflection, i.e, where the lowest curvature 𝜆𝑚 is nega-
tive, with absolute value larger than a given threshold 𝜆𝑡ℎ𝑟, the
push direction is updated to the corresponding eigenvector 𝐞̂𝐦
with an orientation set opposite to the force and the norm of
the displacement set as in Ref. [22]:

𝑑𝑟 = min
(

sizemax,
‖𝐅∥‖

max(|𝜆𝑚𝑖𝑛|, 0.5)

)

, (1)

where 𝐅∥ is the component of the force that is parallel to 𝐞̂𝐦𝐢𝐧 and
sizemax is a user defined threshold. This adaptive norm reduces
the size of the displacement when the system is close to the
saddle point and was shown to accelerate convergence.

2.4. Orthogonal relaxation

To reach convergence to a first-order saddle, the 3𝑁at −1 directions
rthogonal to 𝐞̂𝐦 must be in a local minimum. As for the uphill
ush, this orthogonal relaxation plays two different roles depending on
hether the system is below or above the inflection plane.

1. Below the inflection, a weak orthogonal relaxation is applied
to avoid too short interatomic distances that could result from
the application of the uphill push. A small number of relaxation
steps is then sufficient to assure stability, whereas a whole
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Fig. 2. A complete event generated with ARTn on a two-dimensional potential energy surface. 2(a) An ARTn even is launched from a local energy minimum. Each black dot is
an ARTn step. The black arrows are the pushing directions at each step. The first steps, below the inflection line defined by all the point for which the lowest eigenvalue 𝜆𝑚
is zero (in blue), are pushes in a predetermined random direction followed, at each step, by a slight perpendicular relaxation to avoid collisions. Above the inflection line (in
the red region), steps follow the direction associated with the negative curvature (associated with lowest eigenvalue of the hessian), while relaxing in the perpendicular direction
until a first-order saddle point is found (large black dot in the red region). 2(b) Once at the saddle point, the system is pushed along +𝐞̂𝐦 and −𝐞̂𝐦 to escape the zone where the
forces are null (blue arrows) and relaxed toward the adjacent minima (black arrows). Top figures: 3D plot three dimensional landscape. Bottom figures: 2D plot of two-dimension
projection of the path; the small black lines are the isovalue levels lines for which the energy is the same. .
relaxation (numerical accuracy) is in general not recommended,
because it might lead to the undesired exploration of soft valleys
often associated with large elastic deformation.

2. Above the inflection, an orthogonal relaxation is essential to
reach the actual valley in which 𝐅⟂, the component of the forces
that is orthogonal to 𝐞̂𝐦, is by definition null. To reduce its
computational cost, this relaxation can be stopped when 𝐅⟂
becomes smaller than the parallel component 𝐅∥ by controlling
its convergence threshold. However, if the system is not signifi-
cantly above the inflection, it might happen that this relaxation
brings the algorithm back below the inflection, meaning that
the lowest mode becomes positive and is associated with elastic
deformation, leading to an unsuccessful event. To mitigate the
number of unsuccessful searches, ARTn follows a 3-fold strategy
by using: (i) non-zero inflection threshold (below −0.5 eV Å2) to
determine the point where the system is first above the inflec-
tion; (ii) a progressive number of relaxation steps: small close to
the inflection and progressively larger; (iii) a smooth switch of
the uphill push direction from the initial to the lowest-curvature
eigenvector 𝐞̂𝐦 [16].

2.5. Reaching adjacent minimum and checking the existence of a connected
path

Once the saddle point — defined as a point where 𝜆𝑚 < 0 and the
total force is below a threshold near zero — has been reached, an ad-
jacent minimum can be found through standard energy minimization,
completing the event.

Since forces are zero at the saddle point, a push along the direction
of the eigenvector 𝐞̂𝐦 is applied before starting a standard uncon-
strained minimization to reach the adjacent minimum. This push must
be large enough to ensure that the forces are sufficiently large. Applying
the push along the opposite direction allows to check the existence of
a connected path between the two minima (blue arrows in Fig. 2(b)).
3

3. Improvement of the ARTn core: reducing the number of Lanc-
zos iterations

The computation of the local curvature and associated eigenvec-
tors represents the dominant computational cost for ARTn. This sec-
tion presents recent developments focused on reducing this cost and
improving ARTn’s overall computational efficiency.

We refer the reader to a comparative benchmark of the efficiency of
ARTn against other existing methods published recently by the authors
to complement the benchmarks shown here (see Ref. [16]).

A Lanczos chain starts with a guess basis vector 𝐋𝟏 (see Appendix B)
for iteratively determining 𝐞̂𝐦. This vector can be selected as random
or based on informed knowledge. As the ARTn kernel calls the Lanczos
algorithm after each push-relax, the eigenvector 𝐞̂𝐢+𝟏𝐦 calculated at the
ARTn step 𝑖+ 1 is generally close to the one calculated at the previous
step 𝑖. Therefore, if for the Lanczos of the initial ARTn step, the first
basis vector 𝐋𝟏 is generated at random, the 𝐞̂𝐢𝐦 obtained as a result of
the Lanczos chain at ARTn step 𝑖 can be used as the basis vector 𝐋𝟏 at
ARTn step 𝑖+ 1 (𝐋𝐢+𝟏

1 = 𝐞̂𝐢𝐦). Indeed, in our experience, the dot product
between two consecutive eigenvectors 𝐞̂𝐢𝐦 ⋅ 𝐞̂𝐢+𝟏𝐦 is usually lower than
0.7 below the inflection line and higher than 0.95 above it, making
the use of the previously converged eigenvector more efficient in this
second case (see Fig. 4). Moreover, in this region, the lowest eigenvalue
is negative above the inflection, opening up a gap in the spectrum
between the first and second lowest eigenvalues. This decreases the
mixing of eigenvectors with neighbouring eigenvalues and increases the
ratio 𝜆𝑖∕𝜆𝑚 (see Appendix B, Eq. (B.2)).

This means that, using an 𝐋𝟏 close to the eigenvector associated
with the lowest curvature, in most cases, convergence can be obtained
with a small tridiagonal matrix, as represented in Fig. 3. Since force
calculations are much costlier than matrix diagonalization, we imple-
ment an adaptive approach where, instead of keeping the Lanczos basis
set fixed, as in previous versions of ARTn, the size of the basis is
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Fig. 3. Scheme of two consecutive Lanczos procedures: one at ARTn step 𝑖 and the
second at ARTn step 𝑖 + 1. The starting Lanczos vector 𝐋𝟏 is random at ARTn step 0
and is the previously converged at ARTn step 𝑖 + 1, which implies that fewer Lanczos
vectors are needed to converge to 𝐞̂𝐦 at step 𝑖+ 1. Each vector is the 2D projection of
3𝑁atD vector. The blue brackets ⟨𝑒𝑚|𝐿𝑖⟩ indicate the projection of the unknown 𝐞̂𝐦

n each of the Lanczos basis vectors 𝐋𝐤. The previous algorithm was always using 16
anczos basis vectors.

rogressively increased (see Appendix B) until the lowest eigenvalue
eaches convergence (currently set to |

𝜆𝑚𝑘−𝜆𝑚𝑘−1
𝜆𝑚𝑘

| < 10−2 eV/Å2).
In most cases, this iterative approach leads to a significant reduction

n the number of force calls associated with the Lanczos procedure with
espect to the previous version of the code, despite its former use of
he smart starting 𝐋𝟏. For the systems presented in the next section,

for example, this number of force evaluations needed to converge the
eigenvector is reduced from 16 (old version) to typically less than 10
below the inflection and less than 5 above the inflection (see black
circles Fig. 4), since successive vectors are more parallel.

4. Pre-processing strategies: smart initial pushes

As mentioned previously, ARTn has been applied with success to
many systems with a ranging level of complexity and nature. The reader
is invited to look at these works for more details. In the following, we
focus our attention on two simple examples on which pre-processing
strategies can reduce even more the computational cost. In these ex-
amples, ARTn is coupled with the ab initio software Quantum Espresso
7.0 [23] for the evaluation of energies and forces. ARTn can be
sed with any other quantum mechanical code, including SIESTA [5],
igDFT [24,25] and VASP [9], as well any continuously derivable
mpirical potential.

.1. Diffusion of Al adatom on Al(100) surface

In this first example, we look at the diffusion of an Al adatom on an
l (100) surface, a well studied system with empirical potentials [18].
4
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This example shows how to adopt an event search strategy with min-
imum bias, in order to reduce the computational cost of the search
without affecting the richness of results.

This system is known to be associated with non-intuitive diffusion
mechanisms, so called exchange mechanisms, in addition to the sim-
ple hopping from adsorption site to adsorption site on the Al(100)
surface [18,26]. These exchange mechanisms occur when the adatom
takes the place of its first neighbour, which becomes the new adatom
or pushes the second (3rd, or 4rth) to the surface. These two sets of
mechanisms are respectively represented by red (hopping) and black
(exchange) arrows in Fig. 5. For a full description of all the possible
exchanges, see Fig. 8 of Ref. [18].

If the input vectors are completely random, then half of them shift
the adatom in a direction that is opposite to the surface. In these cases,
we can easily predict that all the ARTn searches would lead to the
dissociation of the adatom from the surface, a physically important
mechanism which is of little interest, however, if we are interested in
diffusion. To avoid this event, it is possible to restrict the choices of
the input vector. In this specific example, we reduce the displacement
of the adatom so that it is oriented towards the surface, and restricted
to only a quarter of the space since it is symmetrically equivalent to
the others.

This constraint is obtained by adding a condition that accepts the
random input vector only if the displacement of the adatom is in a
cone for which the user gives the direction (11-1) and the half angle
(45◦), as presented Fig. 5. The push on this atom remains random, to
preserve the exhaustiveness, but restricted, to save computational cost.
This approach can be used on a single atom or generalized to a region,
when appropriate.

The PES is calculated using a 300+1 atoms supercell of crystalline
aluminium composed by 5 × 5 atoms along the surface, six bulk
layers for which the two bottom layers are fixed at the interatomic
distance (5.30 Å) and a 18 Å vacuum on top of the surface. The 𝛤
centred sampling of the supercell Brillouin zone is 2 × 2 along the
eciprocal surface directions, and an energy cutoff of 15 Ry limits
he number of plane waves used to describe the wavefunctions. All
xplorations of the PES are run in parallel using four different directions
imultaneously, with each exploration also taking advantage of the k-
oint and FFT parallelism capabilities of the DFT software. The total
umber of explorations is stopped when 50 saddle points are found,
s the existence of only about ten low energy saddle points is an a
osteriori knowledge. All the atoms in the first layer of the surface are
aken into account in the initial random displacement.

In this work, ARTn is able to recover all previously identified
iffusion mechanisms without their previous knowledge: events with
addle point energies lower than 1 eV are described in Table given in
ig. 5. Each generated events requires on average 170 force calls. Note
hat our DFT energy barriers are different than the ones that had been
btained with an empirical potential [18], but are similar as the ones
reviously obtained within DFT: 0.20 and 0.65 eV [26] respectively for
he 1st neighbour exchange (Id 1) and the hopping (Id 2).

.2. Chemical reaction in the gas phase

In this second example, a CH3Cl molecule is close enough to another
l atom to form the well known Cl∙...CH3Cl complex [27] shown in
ig. 6(a). From this configuration, the CH3 can reverse to catch this Cl∙
hile breaking its bond with the other Cl, thus forming the reversed
lCH3...Cl∙ complex shown in Fig. 6(c). To compute the energy barrier
f this reaction, the system is placed in a large unit cell with 15 Å of
acuum in the three directions (to reduce image–image interactions, as
uantum ESPRESSO uses periodic boundary conditions). The position
f the Cl atom initially bonded to CH3 is kept fixed throughout the
rocedure to avoid translation of the system, while all the other atoms
re allowed to move, fixing the coordinates of an atom not involved in

he event has no impact on the result. The push size used to escape the
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Fig. 4. Typical number of Lanczos iterations (number of force calls) at each new call of the Lanczos algorithm by ART in three different cases. First case (violet triangles): when
the size of the Lanczos basis is fixed. Second case (red diamonds): when the size of the Lanczos basis is not predetermined and randomly initialized. Third case (black circles):
same as second case but the Lanczos basis is initialized with the previously converged eigenvector (𝐋𝐢+𝟏

𝟏 = 𝐞̂𝐢𝐦).
Fig. 5. Top figure: The two first layers of the Al (100) surface and the Al adatom. The cone is centred on the adatom, with the direction ⟨111⟩ and a 45◦ angle. An input vector
𝐞̂𝐫𝐚𝐧𝐝 is accepted only if its displacement of the Al adatom is located into this cone. The two possible diffusion mechanisms are shown by the black (hopping — Event Id 2) and
red (exchange — Event Id 1) arrows. Bottom table: Transition energies 𝛥𝐸 for diffusion events found with a barrier lower than 1 eV. The Id of each event is the same as the ones
used in Fig. 8 of Ref. [18]: Id 1, 4 and 3 respectively for the exchange with the 1rst, 3rd and 2nd neighbour, and Id 2 for the hopping. Many other barriers lower than 1 eV
have been found around 0.90 eV, but they do not correspond to a diffusion of the addatom, such as the creation of a second addatom or of a vacancy.
area below the inflection is 0.2 Å, which is also the maximum push size
above the inflection, the convergence condition on the forces used to
define a saddle point is 0.05 eV/Å.

We compare here four pre-processing procedures applied to ARTn
in order to recover the saddle point structure detailed in Fig. 6(b). Its
energy calculated in this work is 0.74 eV which is thus the activation
5

barrier of this chemical reaction. The basic ARTn-DFT approach cor-
responds to procedure #1. Procedures #2 to #4 implement additional
constraints based on the knowledge of the system that save computa-
tional time by reducing the number of force calculations. The number
of force calls for each of them is presented in the Table given in Fig. 6.
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Fig. 6. Top: Atomic structures of the reactants, transition state and products of the chemical reaction of CH3Cl with a Cl atom. Below: Total number of force calls to find the
saddle point for the above reaction using each of the four procedures described in the text. This number of force calls does not take into account the relaxation to the adjacent
minimum, which is the same for all.
Procedure #1: The only information used is that of the initial
position. To generated the desired mechanism, the PES must therefore
be explored following the standard unbiased ARTn algorithm shown in
Fig. 1, generating different events resulting from each initial random
displacement. Here, ARTn generates four different physically-relevant
events for this system, for a total of 463 force calls. These events include
the separation of one hydrogen atom from the carbon atom (not shown)
and the binding transfer from one Cl to the other that we are looking
for.

Procedure #2: It requires the knowledge of the general direction
to the saddle point, which restricts the event search, in a similar spirit
to the first example. Instead of launching searches in many random
directions and waiting for the desired event to be generated, a specific
displacement is directly inputted as the starting deformation: the car-
bon atom is moved in the exact direction of the isolated Cl. By reducing
the number of events searches, this procedure drastically reduces the
cost to 96 force calculations, as the algorithm only needs to be run once
to find the correct saddle.

Procedure #3: It requires the knowledge of the final products of
the reaction, which corresponds to a common case in chemistry. With
this information, a guessed path can be constructed between the known
reactant and the product. ARTn can then start with a structure that
is an interpolation between the initial and final structures, which is
usually already above the inflection line and close to the saddle point.
Here, convergence to the saddle point is obtained in only 50 force
evaluations, which is two times less than in procedure #2 and almost
10 times less than in procedure #1. This procedure is also known as r-
ARTn [16] and was suggested as an alternative to the computationally
expensive string methods.

Procedure #4: It requires the knowledge that the path is fully
symmetrical. This is not true in general, but is sometimes the case for
diffusion in crystalline system, catalysis and simple molecular reactions.
Let 𝐶 represent the point at the symmetric centre on the diffusion path.
𝐶 is known and can be computed for example as 𝐶 = (𝑥𝑖𝑚𝑎𝑥 + 𝑥𝑓𝑚𝑎𝑥)∕2,
where 𝑥𝑖(𝑓 )𝑚𝑎𝑥 is the triplet of initial (final) coordinates (x,y,z) of the
atom that have the maximal displacement, here the carbon atom. This
symmetry implies that 𝐞̂𝐦 can be accurately estimated and provided
to ARTn as a pre-processing input. Finally, as in procedure #3, the
algorithm can start at an interpolated position, which is, by symmetry,
exactly in the centre between the two minima, 𝐗𝐦𝐢𝐝 = (𝐗𝐢 +𝐗𝐟 )∕2. This
starting point is located on a ridge that is orthogonal to the valley due
to the symmetry. Each atom relaxes on a straight line linking 𝐶 with
its starting middle position. The direction of this line is 𝐗𝐦𝐢𝐝

𝐂 = 𝐗𝐦𝐢𝐝 −
(𝐶,𝐶,… , 𝐶), and 𝐞̂𝐦 is thus the component of the total displacement
vector 𝚫𝐗 = 𝐗𝐢 − 𝐗𝐟 that is orthogonal to this direction:

𝐞̂ = 𝚫𝐗 − (𝚫𝐗 ∙ 𝐗𝐦𝐢𝐝)𝐗𝐦𝐢𝐝 (2)
6
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Reaching the saddle point costs less than half the previous price with
only 20 force calculations all called by one single perpendicular relax-
ation.

5. Conclusion

This paper presents a fundamental description of ARTn using an
original point of view that clearly shows the link between the various
steps of ARTn and the evolution of a system on its own potential energy
surface. This knowledge was refined over the last few years, leading
to various technical improvements that were presented recently [16],
but never explicitly detailed and illustrated. The capacity of ARTn to
explore the PES at the ab initio accuracy is demonstrated on two systems
using a version of the code that includes all these latest improvements
and that is embedded into Quantum Espresso [23]. These examples
show how to make use of prior knowledge of PES to reduce the
computational cost of an unbiased exploration and demonstrate the
remarkable efficiency of ARTn local approach to characterize diffusion
and activated mechanisms in complex environments.

Over the last two decades, ARTn has already been applied with
great success to a wide range of complex systems ranging from proteins
aggregation to amorphous surfaces reactions or diffusion in glassy
materials. It can therefore be applied to any complex materials to
look problems such as catalysis, chemical reaction, structural evolution
and much more. With these latest improvements, the method now has
unsurpassed accuracy and efficiency and is therefore one of the most
powerful tools for the investigation and characterization of activated
atomic mechanisms. These significant improvements to ARTn are now
available with the Quantum Espresso electronic structure relaxation
code. In order to help the development and dissemination of ART in the
rest of the community, we are currently working on a more portable
version of ART that can be plugged into any software capable of
calculating energy and forces with DFT or simple empirical potentials.
ARTn will then present itself as a valuable alternative tool to the
more conventional methods widely used in the atomic scale community
today both for single and double-ended problems.
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Appendix A. Few definitions regarding the potential energy sur-
face

We provide here a few definitions for some of the concepts used
in this article regarding the potential energy surface. There are largely
based on Ref. [28]. For a summarized version, see Table A.1.

• A first-order saddle point, represented Fig. A.7(a), is a maximum
along one dimension, and a minimum along the other 3𝑁𝑎𝑡 − 1.
This implies that all the first-order derivatives are zero at this
point, and all but one of the Hessian eigenvalues are positive,

Table A.1
Properties of the main remarkable regions and points on the potential energy surface.
𝜆𝑖 represents a Hessian eigenvalue.

1st derivatives 2nd derivatives

Minimum ∇𝐸 = 0 ∀𝑖 ∈ [[1, 3𝑁𝑎𝑡]], 𝜆𝑖 > 0

Saddle point ∇𝐸 = 0 ∃𝑖 ∈ [[1, 3𝑁𝑎𝑡]], 𝜆𝑖 < 0

Inflection – ∃𝑖 ∈ [[1, 3𝑁𝑎𝑡]], 𝜆𝑖 = 0

Below-inflection – ∀𝑖 ∈ [[1, 3𝑁𝑎𝑡]], 𝜆𝑖 > 0

Above-inflection – ∃𝑖 ∈ [[1, 3𝑁𝑎𝑡]], 𝜆𝑖 < 0

Valley ∇𝐸⟂𝐞̂𝐦 = 0 –

Ridge ∇𝐸∥𝐞̂𝐦 = 0 –
7

not counting the trivial macroscopic rotation and translation
degrees of freedom. Physically, they are unstable structures that
correspond to transition states.

• The inflection line, represented by the blue lines Fig. A.7(c), is the
set of points for which the smallest eigenvalue of the Hessian is
zero.

• The configuration space below the inflection, represented in blue
Fig. A.7(c), is the space in which all the Hessian eigenvalues
are positive: this is where the minima (represented Fig. A.7(a))
are located and where the valleys and ridges begin. When no
minima is present, it is a shoulder. Its complementary part is
the configuration space above the inflection, in which at least one
Hessian eigenvalue is negative.

• The valleys, represented in black Fig. A.7(c), are the set of points
for which the gradient is parallel to the eigenvector 𝐞̂𝐦, i.e for
which the component of the gradient that is orthogonal to 𝐞̂𝐦 is
null. This is calculated by splitting the gradient in two compo-
nents: ∇𝐸 = ∇𝐸⟂ + ∇𝐸∥, where ∇𝐸⟂ = ∇𝐸 − (∇𝐸 ∙ 𝐞̂𝐦) ̂𝐞𝐦. Along
the valley, the points of highest energy are the saddle points.

• The ridges, represented in white Fig. A.7(c), are the set of points
for which the gradient is orthogonal to the eigenvector 𝐞̂𝐦, i.e.
for which ∇𝐸∥ is null. The ridges cross the valleys at the saddle
points and at the minima.

• A basin, represented in blue Fig. A.7(b), is a set of atomic positions
for which an atomic relaxation moves the system toward a same
minimum. This is a global definition contrary to all the others
which are local. A basin is surrounded by steep energy rises that
generally correspond to the ridges except around the extrema
where forbidden crossings occur due to the use of eigenvectors
in the ridges definition.

Appendix B. Lanczos diagonalization

The Lanczos algorithm [21] is a particular case of the Arnoldi algo-
rithm [29] that can be simplified when the matrix to be diagonalized is
hermitian. This method can deliver the smallest eigenvalue 𝜆𝑚 and its
corresponding eigenvector 𝐞̂𝐦 of a potentially very large matrix through
the knowledge of the matrix–vector products. In ARTn, this matrix is
the Hessian 𝐻𝑖𝑗 =

𝜕2𝐸
𝜕𝑥𝑖𝜕𝑥𝑗

with size 3𝑁at × 3𝑁at .
Knowledge of the full Hessian matrix is not needed, because the

algorithm only needs its product with a given vector, [𝐻]𝐝𝐋𝐤, at each
step 𝑘, where 𝐝𝐋 is a small displacement vector from a reference
position. This product can be obtained in only one force calculation:
Fig. A.7. Example of a two dimensions PES having A.7(a)- saddle points (green dots), minima (blue dots), maxima (grey dots), a 𝐞̂𝐦 field (green lines pointing towards saddle
points), and a force field (blue lines pointing towards minima) A.7(c)- valleys (black lines), ridges (white lines), inflection lines (blue line) surrounding a space below the inflection
(blue areas), and A.7(b)- a basin.

https://www.quantum-espresso.org
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Fig. B.8. Schematic representation of the Lanczos algorithm.

• Do a small distortion 𝑑𝑟 of the atomic positions along 𝐋 (forming
𝐝𝐋) :
𝐗𝐋 = 𝐗 + 𝐝𝐋

• Calculate the forces at this displaced position with the software
(here Quantum Espresso):
𝐅(𝐗𝐋) = −∇𝐸(𝐗𝐋)

• Return the correct term:
[𝐻]𝐝𝐋 = 𝚫𝐅 = 𝐅(𝐗𝐋)−𝐅(𝐗)

𝑑𝑟 , where 𝐅(𝐗) has already been calculated
in the last minimization step, before entering the Lanczos loop.

To obtain 𝐞̂𝐦, the powers method is used. It states that any matrix
elevated at a sufficiently high power 𝑘 and multiplied by any vector 𝐋
returns an approximation of the eigenvector associated to the highest
eigenvalue (lowest for −𝑘):

lim
𝑘→+∞

[𝐻]−𝑘𝐋 = 𝐞̂𝐦 (B.1)

It can be simply demonstrated by decomposing 𝐋 on the eigen basis of
[𝐻], giving 𝐋 =

∑3𝑁𝑎𝑡
𝑖=1 𝑐𝑖𝐞̂𝐢 where 𝑐1 = 𝑐𝑚 (minimum), and by factorizing:

𝐻]−𝑘𝐋 = 𝜆−𝑘𝑚 𝑐𝑚𝐞̂𝐦 +
3𝑁𝑎𝑡
∑

𝑐𝑖𝜆
−𝑘
𝑖 𝐞̂𝐢 (B.2)
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𝑖=2
r

= 𝜆−𝑘𝑚

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑐𝑚𝐞̂𝐦 +
3𝑁𝑎𝑡
∑

𝑖=2
𝑐𝑖

(

𝜆𝑖
𝜆𝑚

)−𝑘
𝐞̂𝐢

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
←←←←←←←←←←←←←←←←←←←←←←←←←←←→
𝑘→+∞

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Here the number of iterations 𝑘 needed to converge depends on two
conditions :

• The ratio 𝜆𝑖
𝜆𝑚

. If it is close to one, meaning that 𝜆𝑚 is not separated
from the other eigenvalues as it occurs below the inflection, then
convergence is slow; on the contrary, if it is close to 0, meaning
that 𝜆𝑚 is separated from the other eigenvalues as it occurs above
the inflection where one eigenvalue is negative, then convergence
is faster.

• The amplitude of the coefficients 𝑐𝑖≠𝑚. If they are small, this
means that the initial vector 𝐋 is already quite converged to ̂𝐞𝐦,
and less power iterations are needed to achieve the convergence.

With this approach, the algorithm finds an approximate eigenvector,
that gets closer and closer to 𝐞̂𝐦 at each increase of 𝑘. To avoid handling
large matrices, it is most cost efficient to use a recurrence scheme
: 𝐋𝐤+𝟏 = [𝐻]𝐋𝐤, where the initial 𝐋𝟏 can be random or, better, a
reasonable guess for 𝐞̂𝐦.

To reduce the number of iterations 𝑘 needed to converge to 𝐞̂𝐦,
Lanczos added two tricks to the power method. First, [𝐻] is reduced on
its subspace generated by the basis of the 𝐋𝐤 vectors. This is done using
a reduction matrix [𝑅] =

(

𝐋𝟏|𝐋𝟐|⋯ |𝐋𝐤
)

, leading to a tridiagonal matrix
[𝑇 ] = [𝑅]𝑇 [𝐻][𝑅]. The size of [𝑇 ] is 𝑘 × 𝑘 and its lowest eigenvalue
converges to 𝜆𝑚𝑖𝑛, because its basis contains more and more parts of
𝐞̂𝐦. However the 𝐋𝐤 basis is not orthogonal. Hence, the second Lanczos
idea is to chose each new vector 𝐋𝐤 such that it is orthogonal to the
previous ones by removing their respective contribution:

𝐋𝐤+𝟏 = [𝐻]𝐋𝐤 −
𝑘
∑

𝑗=0
(𝐋𝑇

𝐤+𝟏𝐋𝐣)𝐋𝐣 (B.3)

These vectors are called the Lanczos vectors and contain the part of
𝐞̂𝐦 coming from the power, but not the parts that are already taken
into account in the previous basis vectors. Taking orthogonal vectors
means that the next Lanczos vector focuses the power method on the
components of 𝐞̂𝐦 that are still unknown, restricting the number of
imensions that still need to be converged.

Thanks to recurrence, this form can be reduce to:

𝐤+𝟏 = [𝐻]𝐋𝐤 − 𝛼𝑘𝐋𝐤 − 𝛽𝑘−1𝐋𝐤−𝟏 (B.4)

where

𝛼𝑘 =
𝐋𝑇
𝐤 [𝐻]𝐋𝐤

𝐋𝑇
𝐤𝐋𝐤

and 𝛽𝑘 =
𝐋𝑇
𝐤−𝟏[𝐻]𝐋𝐤

𝐋𝑇
𝐤−𝟏𝐋𝐤−𝟏

(B.5)

Finally, the [𝑇 ] matrix can be simply written as:

𝑇𝑘 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝛼1 𝛽2 0 ⋯ 0
𝛽2 𝛼2 𝛽3 ⋱ ⋮
0 𝛽3 𝛼3 ⋱ 0
⋮ ⋱ ⋱ ⋱ 𝛽𝑘
0 ⋯ 0 𝛽𝑘 𝛼𝑘

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(B.6)

pon diagonalization of the matrix [𝑇 ], the lowest eigenvalue 𝜆𝑇𝑚
nd its corresponding eigenvector 𝐞̂𝐓𝐦 are obtained. The eigenvalue
𝑇𝑚 approximates the lowest eigenvalue 𝜆𝑚 of matrix [𝐻], and the
orresponding eigenvector 𝐞̂𝐦 can be constructed from the eigenvector
̂𝐓𝐦, by multiplying 𝐞̂𝐦 = [𝑅]𝐞̂𝐓𝐦. The size of the Lanczos basis (number
f iterations 𝑘) is increased until reaching the convergence criterion, as
epresented Fig. B.8.
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