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A R T I C L E  I N F O   

Communicated by F. Peeters  

A B S T R A C T   

Using Buckingham potentials we study zinc spinel ferrites ZnFe2O4 mechanical properties such as elastic con-
stants, bulk moduli and vacancy formation energies EV at zero temperature. These properties are analyzed as a 
function of the lattice parameter, the pressure and the inversion degree parameter. The potentials predict the 
geometry of normal and partial inverse spinels in good agreement with reported experimental data. Statistical 
randomness of the octahedral sites in partial inverse spinels is implemented to investigate its effects in energies, 
the lattice parameter, the elastic constants and bulk moduli. The results show that deformations of up to ±6% are 
associated with pressures of up to 50 GPa, and that the normal spinel at zero pressure is in the limit between 
brittle and ductile, (B/G  = 1.77). Besides, positive pressures make the normal spinel brittle while negative ones 
transform it into ductile. However, the partial inverse spinels are ductile materials whose ductility increases with 
the inversion degree. It is also found that EV(O) ≤ EV(Zn) ≤ EV(Fe) and that these computations require a large 
box size. Our results show that fluctuations due to randomness of Ze and Fe play an important role in the for-
mation of vacancies in the inverse spinel and their stability, but they can be safely ignored for elastic constants. 
The results are compared to experimental data found in the literature.   

1. Introduction 

Zinc-ferrites ZnFe2O4 (ZFO) are an important kind of spinel struc-
tures used in advanced technological applications, such as spintronic 
devices, power inductors, electromagnetic interference filters, film 
transformers in integrated circuits, antennas, nanowires, soft magnets, 
li-ion batteries, etc. [1–7]. 

The ZFO is a zinc-ferrite having a spinel structure and -it is usually 
found forming a normal spinel structure, although, inverse spinel 
structures can also be synthetized. The ZFO crystallizes following the 
general stoichiometric formula 

(
Zn2+

1− xFe3+
x
)[

Zn2+
x  Fe3+

2− x
]
O2−

4 and space 
group Fd 3 m, no. 227, where () and [] stands for tetrahedral and 
octahedral sites respectively [8,9]. The unit cell consists of 32 O2− an-
ions organized in a face centered cubic (fcc) structure, forming 8 tetra-
hedral and 16 octahedral sites. From the experimental viewpoint, the 
most chemically stable structure of ZFO is the normal spinel structure 

ZnFe2O4, which has x = 0. When 0 < x < 1 it is called partial-inverse 
ZFO spinel, which is also observed experimentally [6,10,11]. The x 
parameter thus plays a relevant role for structural and mechanical 
properties. It also has a role in other properties not studied here, e.g., a 
strong ferromagnetism results from partially inverse spinel structures [6, 
12]. According to Granole et al. [10], the partial inverse ZFO exhibits a 
variable structure where the distribution of Zn and Fe cations between 
octahedral and tetrahedral sites within the crystal lattice depends on the 
synthesis conditions. Rietveld refinement and Mössbauer spectroscopy 
experiments show that the inversion degree increases linearly with the 
calcination temperature [11]. Normal ZFO can be synthesized by mixing 
α-Fe2O3 and ZnO oxides by conventional solid state methods (milling 
and heating) whereas partial inverse ZFO can be prepared by other 
techniques such as e.g., the reaction of Zn(SO4)2 with Fe2(SO4)3 in LiCl 
molten salt [6]. 

Although ZFO systems have been largely studied experimentally and 
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computationally, only a few molecular dynamics (MD) studies were 
performed, due, in part, to the lack of good empirical potentials or to the 
computational cost of the methods based on density functional theory 
(DFT). Indeed, most of the recent computational works are DFT studies 
of optical and magnetic properties, although in some cases structural 
properties are also analyzed [13–17]. The only classical MD simulations 

we found are from Lewis & Catlow [18]. Also we have done a resent MD 
study but in Ni-Fe-O spinel strutures which share some similatities to 
ZFO systems [19]. Apparent discrepancies among experiments and also 
with some simulations, show that more simulations are needed. For 
example, DFT computations done on ZFO [20], at pressures of 0 GPa, 11 
GPa and 23 GPa predict that the minimum value for elastic constants is 
at 11 GPa. This appears to contradict experiments on magnetite, that 
show a uniform increase with pressure for pressure ranging from 0 to 
9.0 GPa [21,22]. Hence the need to explore further the impact of pres-
sure on ZFO properties. 

Another interesting parameter in these spinels is the vacancy for-
mation energy. This is important for several reasons: first, ZFO is a well- 
known anode material in lithium ion batteries due to its large theoretical 
capacity and it is well known that point defects have an important role 
for lithiation [7]. Second, physicochemical properties such as photo-
catalysis and electrocatalysis are strongly affected by the distribution of 
the cations within the oxygen lattice [10,23]. For instance, hydrogena-
tion for renewable energy processes requires ZFO flat films for photo-
electrochemical performance of photoanodes for water oxidation, where 
O vacancies with n-type character are important [24]. Furthermore, DFT 
calculations suggest that oxygen vacancies can play an important role in 
the formation of local ferromagnetic coupling between Fe ions at octa-
hedral sites in ZFO [17]. Besides, DFT calculations of the band structure 
and density of states predict that vacancies change the normal spinel 
ZFO from a semiconducting to a metallic character [13]. 

Table 1 
Buckingham spinel parameters for ZnFe2O4 spinel systems [25–28].  

Pair zi zi Aij (eV) ρij (Å) Cij (eVÅ6) 
Zn2+O2− +2 − 2 529.70 0.3581 0 
Fe3+O2− +3 − 2 1414.6 0.3128 0 
O2− –O2− − 2 − 2 9547.96 0.2192 32 
FeFe, ZnZn, ZnFe (only Coulomb term used)  

Fig. 1. 3D and top views along [100] direction of a normal (x = 0) and inverse 
(x = 1) ZFO spinel structures after relaxation to zero pressure with the Buck-
ingham potential. Red is Zn, blue is Fe and yellow is O. a is the lattice, u = l/ a is 
the anion parameter and l is de distance to first O ion with coordinates (u,u,u)a. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 

Table 2 
Lattice constant a (Å); final energy/atom Ef (eV); the bulk modulus B (GPa), polycrystalline data: rigidity modulus (or shear modulus) G (GPa), Young modulus E (GPa) 
and Poisson ratio νH ; the elastic constants (GPa) and the Zener anisotropic factor A. Standard deviations over 400 samples are given for inverse (x =1) and partial 
inverse spinels (x =0.5).  

ZFO-Spinel a Ef B G E νH C11 C12 C44 A 
Normal (x =0.0) 8.479 − 27.438 212.78 119.39 301.74 0.26 338.00 150.17 140.19 1.49 
Inverse (x =0.5) 8.445 

±0.013 

− 27.362 

±0.004 

213.0 

±3.5 

116.38 

±1.00 

295.33 

±2.63 

0.27 

±0.00 

325.25 

±6.38 

156.50 

±4.50 

144.49 

±3.00 

1.72 

±0.10 
Inverse (x =1.0) 8.391 

±0.008 

− 27.327 

±0.003 

230.49 

±0.62 

112.16 

±0.49 

289.52 

±1.18 

0.29 

±0.00 

331.73 

±2.27 

179.88 

±0.45 

153.03 

±0.66 

2.02 

±0.03 

Normal spinel 
DFT (Meng [20]) 8.52 – 170.30 59.10 158.91 0.34 219.20 145.84 81.36 2.22 
MD (Lewis [18]) – – 203.3 114.2 288.6 0.31 322 144 131 1.47 
Exp (Lewis [18]) – – 193.0 115.8 289.5 0.37 265 157 157 2.91 
Exp (Grimes[42]) – – 193.0 93.5 241.5 0.29 265 157 135 2.50 
Exp (Li [41]) 8.441 – 182.4 74.6 196.9 0.32 250.5 148.4 96.2 1.89 
Exp (Gholizadeh [43]) 8.5 – 77.7 49.91 123.3 0.23 144.3 44.42 48.9 0.98  

Fig. 2. ZFO structure minimization as a function of lattice a (or volume V, top 
axis) with the Buckingham potential. Dots are the lowest minima or zero- 
pressure point. Inv1 and inv2 are two random inverse spinel samples. 
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In this study, we test a combination of Buckingham pair potentials 
[25]. These potentials have been tested individually for systems such as 
zinc oxide nanobelts of ZnO [26,27] and magnetite [28]. First, we revisit 
the behavior of elastic properties at zero pressure for these systems and 
compare discrepancies found with the literature. After, we study them as 
a function of the lattice and pressure. We then investigate the role of the 
inversion degree to conclude our study with the vacancy formation 
energies. This paper aims to establish whether these potentials can 
reproduce the structural ZFO properties. In particular, we tackle the 
interplay between geometry and the structural behavior of ZFO spinel 
ferrites for structures exhibiting normal and partial-inverse 
configurations. 

2. Methodology 

2.1. Force-field 

To fully characterize the ZFO spinel structure, it is necessary to 
model both the cation interactions — Fe–Fe, Zn–Zn and Zn–Fe— and the 
interactions with the O atoms — Zn–O, Fe–O and O–O. For the Zn–O, 
Fe–O and O–O pair interactions we employ an empirical Buckingham 
potential 

V
(
rij
)
=

zizje2

4πε0rij
+ Aij exp

(
− rij

ρij

)

−
Cij

r6
ij
, (1)  

where Aij, ρij and Cij are the fitting parameters, and zi is the charge of ion 
i. The cation interactions, Fe–Fe, Zn–Zn and Zn–Fe, are handled, as 
usual, using only a coulomb term. This is a long-range interaction po-
tential that can be computed via particle-particle particle-mesh (PPPM) 
or the Ewald methods [29], here we use Ewald. The Wolf method [30, 
31] can also be used in principle, however, it exhibits the poorest per-
formance with minimizations for our system. The ZnO pair potential 
[27] has been tested with MD for example to reproduce the response of 

zinc oxide nanobelts under tensile loading [26,27], while the FeO po-
tential has been used to simulate some magnetite properties like diffu-
sion [28]. The parameters are given in Table 1. Our simulations are 
performed using the Large-scale Atomic/Molecular Massively Parallel 
Simulator (LAMMPS) [32]. 

In the Ewald (or PPPM) method three parameters must be set: (i) the 
cut-off a distance rc for computing long-range interactions into the k- 
space, (ii) the desired relative error ε in forces and, (iii) the damping 
parameter α. In contrast to simulations at finite temperature, the 
coulombic part can be cumbersome to minimize to get cero pressure as 
simulations may stop before reaching the predefined force tolerance. 
This affects the stresses and, as a consequence, the elastic constants may 
not be reliable. The minimization procedure may stop because the al-
gorithm is unable to reduce the energy (from one step to the next one, 
the code stops if the change in energy is lower than the machine pre-
cision although the force is not yet zero, leading to wrong values of the 
elastic constants). A solution is to choose the rc, ε and α parameters so 
that the Ewald sums converge rapidly. The cut-off distance is set to rc =

16 Å (lower values exhibit problems of convergence or do not recover 
the spinel structure). The precision is set to ε = 10− 10 (this value is small 
compared to usual values reported to be around ∼ 10− 4 [28] for MD 
simulations at finite temperatures, however, the precise computation of 
static elastic constants requires higher precision). The damping param-
eter chosen is the predefined value computed by LAMMPS code at the 
defined precision which guarantees a full relaxation for the smallest 
system (the unitary cell), then this value is kept for the larger similar 
system. Adding the long-range term r− 6 does not modify the results, so 
only r− 1 is computed in the k-space. For computing vacancy properties, 

the energy must be corrected by adding a background Ebg = − π
2ε2V(

∑N

i=1
zi)

2 

to satisfy charge neutrality in the Ewald sum [33]. This is easily handled 
by LAMMPS. 

Fig. 3. In a), normal spinel elastic constants vs the lattice a and in b), the elastic moduli. The vertical dashed-line indicates zero pressure. In c), the Zener anisotropic 
factor A, the Pugh ratio B/G > 1.75, indicates that the ZFO behaves as ductile, whereas B/G < 1.75, the material behaves as brittle. In d), the Poisson’s Ratios for a 
polycrystalline aggregate νH , and for a monocrystalline ν[100] along direction [100]. Pressure P is given in top axis. 
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2.2. Elastic constants 

The computational procedure to obtain the elastic constants relies on 
minimizations and they are done using the conjugate gradient (CG) al-
gorithm set by default in LAMMPS. The procedure starts by computing 
the six stress components over all N particles in the system [34,35], 
namely 

Pij =
1
V

∑N

k=1

(
mkvkivkj + rkifkj

)
, (2)  

where rki, vki and fki are the vector components of the kth-atom in the i 
direction of the position, velocity and force respectively. In minimiza-
tions, the first sum is not considered. This gives a symmetric stress 
tensor, stored as a 6-element vector, with the components ordered by xx,
yy, zz, xy, xz, yz. The pressure is computed from the stress tensor as the 
average 

P=
P11 + P22 + P33

3
=

1
3V

∑N

k=1
(rk1fk1 + rk2fk2 + rk3fk3). (3) 

The elastic constants are related to the stress tensor by the relation 
Cαβ = − ∂Pα

∂eβ
, where eβ is the strain tensor and the indeces run over the 

previous six ordered components. To do so, the simulation box is 
minimized to get zero pressure. Next, the box is deformed by a small 
positive fraction and minimized again to get the stress tensor after the 
deformation C+

αβ (a force tolerance of 10− 5 eV/Å with energy tolerance 
set to 0.0 eV is used in all minimizations); the procedure is then repeated 

for a negative fraction to get C−
αβ, and elastic constants are the average 

Cαβ = (C+
αβ +C−

αβ)/2 [19]. Once the elastic constants are obtained, we 
compute the physical quantities of interest for a polycrystalline aggre-
gate, i.e. the bulk modulus B, the rigidity modulus (or shear modulus) G, 
the Young modulus E, the Poisson ratio νH, using the Voigt-Reuss-Hill 
scheme [36,37]: 

B=
C11 + 2C12

3
, (4)  

G=
GR + GV

2
, (5)  

GV =
(C11 − C12) + 3C44

5
, (6)  

GR =
5(C11 − C12)C44

3(C11 − C12) + 4C44
, (7)  

E=
9GB

G + 3B
, (8)  

νH =
3B/2 − G
G + 3B

=
1
2

(

1 −
3G

3B + G

)

= − 1+
E

2G
=

3B − E
6B

=
1
2
−

E
6B

. (9) 

Since the spinel is anisotropic, we also compute Poisson’s ratio for a 
monocrystalline structure along the [100] direction according to 

ν[100] =
1

1 + C11
C12

. (10) 

In fact, Poisson’s ratio is most simply expressed as a ratio of 

Fig. 4. a) Bulk modulus B and its derivative as a function of pressure P and b) 
the corresponding Energy as given by Buckingham potential and the Murnag-
ham’s equation for a normal spinel, using B′

≈ 3.5 (slope between P1 and P2) 
or B′

(P) ≈ ΔB/ΔP in a normal spinel (inverse case not shown). 

Fig. 5. In a) lattice and in b), energy vs inversion degree x. Statistical fluctu-
ations, indicated by bars, are computed by the standard deviation. 
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compliance coefficients, νij = − Sij/Sii (the compliance is the inverse S =

C− 1), with i ∕= j [38,39]. Because of symmetry in cubic spinels, νij = νji, 
where ν[100] = ν12 = ν13 = ν23 and the others νij = 0, for i, j = 4, 5,6. 
Elastic anisotropy can also be measured by the Zener anisotropic factor 

A=
2C44

C11 − C12
. (11) 

Spinel structures must be mechanically stable and as a consequence, 
their elastic constants must satisfy the stability criteria [36], 

C11 > 0, C44 > 0,C11 > |C12|, (C11 + 2C12) > 0. (12)  

2.3. Geometrical construction 

Partial inverse spinels are described by the formula 
(
Zn2+

1− xFe3+
x
)[

Zn2+
x  Fe3+

2− x
]
O2−

4 , thus, they can be constructed using a 
simple Monte Carlo method. We randomly place Fe or Zn cations with 
probability equal to the inversion parameter x in the following manner: 

a random number 0 ≤ r ≤ 1 is generated; for a tetrahedral site, if r ≤ x 
we put an Fe ion on the site, otherwise a Zn ion is placed. For an octa-
hedral site, if r ≤ x/2 we put a Zn ion, otherwise an Fe ion. However, this 
method does not guarantee that when x = 1, i.e. for the full inverse 
spinel, all tetrahedral sites are filled with Fe ions (the same applies for 
octahedral sites). In that case, we put Fe ions in the tetrahedral sites and 
shuffle half Fe and half Zn ions on octahedral sites using the Fisher-Yates 
algorithm [40]. 

3. Results and discussion 

3.1. Geometries and elastic constants at zero pressure 

In the following results a unitary cell is used with normal spinels and 
a box of 3 × 3 × 3 unitary cells with inverse spinels to reduce fluctua-
tions and get better statistics. Both the inverse and normal spinels are 
stable after energy minimizations to zero pressure (Fig. 1). The lattice 
constants predicted are in good agreement with experiments [41], as 
reported in Table 2. The anion parameter u is required to define frac-
tional coordinates of O ions and in an ideal spinel it has the value of 3/8 
(Wycoff notation, point symmetry 43 m) [8]. As expected, in a normal 
spinel this potential predicts a larger anion parameter (0.392), which is 
close to the experimental values (0.383) [15] or (0.386) [34] or the DFT 
value (0.384) [15]. 

Fig. 2 shows the minimum energy as a function of the lattice 
parameter (or the volume in the top axis). We perform a series of sim-
ulations as a function of the lattice parameter a where a varies between 
8.0 Å and 9.0 Å (or equivalently, we vary the volume from 512 Å3 to 729 
Å3) where the spinel structure is expected to remain stable and with 
steps of 0.1 Å (this is equivalent to producing a strain of approximately 
ε =

|a− a0 |
ao

∼ 6%, where a0 is the lattice parameter at zero pressure). For 
the inverse spinel we look at two different random samples referred to as 
Inv1 and Inv2. As expected, the plots of the energy with this potential 
(see Fig. 2) predict the normal spinel as the most stable structure. 

Bulk physical properties predicted by the potential after energy 
minimization at zero pressure are computed and also given in Table 2. 
The respective results are compared both with DFT and experiments 
from literature [18,41,43]. The predicted elastic constants satisfy the 
stability conditions (equation (12)) but they are larger than experi-
mental and DFT results. For inverse spinels, we perform 400 simulations 
at zero pressure, each by randomly shuffling ions over octahedral 
compositions. Averages and standard deviations are computed for in-
verse degrees of 0.5 and 1.0. The lattice constants predicted for the 
partial inverse spinel and the inverse spinel are smaller than that of a 
normal spinel by ~0.5% and 1.1% respectively. 

As shown in Table 2, experimental data for elastic constants of a ZFO- 
normal spinel vary greatly. Our results are closer to the experimental 
results reported by Lewis and Catlow [18], with differences of ~27%, 
~4% and ~11% for C11, C12 and C44 respectively. They are also similar 
to the MD study by the same group, performed with a Shell-model po-
tential of their own. While our results are of similar precision for C11 
(~32%) and C12 (~1.2%) with respect to Li et al. experiments [41], 
agreement is much less for C44 (~46%). The difference on C44 is even 
larger when compared to DFT results reported by Meng et al. [20] 
(~72%). For C11 the difference is large too (~30%) although C12 (~3%) 
is similar to ours. Experimentally, in spinel ferrites, it is expected that 
C44 be the smallest of the modulus [41], as observed in Table 2, except 
for Lewis’ experiment where it seems that the Cauchy relation applies as 
C12 = C44 = 157 GPa. However, the Cauchy relation is not expected to 
hold for these spinels, i.e., C12 should not be equal to C44, because they 
are not centrosymmetric [44,45]. This is indeed observed by Grimes 
[42] where C44 = 135 GPa (see Table 2). We note that Gholizadeh [43] 
experimental results, presented here for completeness, are for nano-
particles, far from the bulk condition, which explains why they stand 
out. 

Fig. 6. Elastic constants and Bulk moduli as function of the inversion degree x.  
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Results for inverse and partial inverse spinels are also summarized in 
Table 2. While we did not find experimental data nor DFT results to 
compare with, we expect a precision similar to that of normal spinels as 
the cation random mixing in octahedral sites does not affect the lattice 
parameter and the final energy significantly (Table 2). This is also 
observed in the error given for rigidity moduli B, G and E (less than 

~1%) and in the case of the elastic constants (around ~2%) for the 
inverse case. 

3.2. Effects of lattice and pressure changings 

We also compute the evolution of elastic properties and pressure as a 

Fig. 7. a) Ductile behavior of the ZFO partial inverse spinel versus the inversion degree x; red line, B/G = 1.75 is the limit between ductile and brittle. b) The Zener 
anisotropy factor. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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function of the lattice parameter, as shown in Fig. 3a and b. The po-
tential predicts that under compression of around ~6% the pressure 
rises up to 50 GPa but the structure remains stable. C11 and B varies 
linearly with the lattice while C12 increases faster under compression 
and C44 is approximately constant (although it diminishes beyond a >

8.7 Å). 
As the lattice parameter is expanded and the pressure falls, effects on 

B, G and E become important: a compression of ~6% produces an in-
crease in the bulk modulus of ~170 GPa while an expansion of the same 
amount leads to a reduction to ~120 GPa. Under expansion, the shear 
modulus G shows a slow variation while the Young modulus E falls 
rapidly, as the ZFO becomes less stable. Under this range of pressures, 
we observe that B > G, which indicates that the shear modulus is the 
parameter that limits the mechanical stability. The Pugh ratio B/ G 
(Fig. 3c) is a useful criterion to distinguish between ductile and brittle 
behavior: if B/G > 1.75, the material behaves as ductile, whereas if B/
G < 1.75, the material behaves as brittle [20,46]. We observe that B/
G > 1.75 for positive pressures, which indicates that the spinel is ductile, 
whereas for negative pressures B/G < 1.75 and the spinel becomes 
brittle. 

Because Poisson’s ratio is proportional to the plasticity of materials it 
reflects their stability and provides information about the interatomic 
forces [20]. According to equation (9), in an isotropic material, Pois-
son’s ratio is restricted to − 1 ≤ νH ≤ 0.5 (B = 0 or G = 0). However for 
two body central-forces in polycrystalline aggregates (formed, e. g, by 
fcc, bcc or crystallites like NaCl, ZnS, CsCl), νH is bounded to 0.25 ≤ νH ≤

0.5 [47,48]. Since spinels are not centrosymmetric, the central-force 
model predicts a violation of the Cauchy’s relation, i.e. that C12 ∕= C44 
and these bounds do not apply [44,45]. In a normal spinel, at zero 
pressure, the potential predicts νH = 0.26 and ν[100] = 0.31. As the lattice 

is expanded, νH falls below 0.25, whereas ν[100] is bounded to 0.25–0.5 
limits. Fig. 3d shows that νH < ν[100]. The difference is almost constant 
(~0.04) from 8.0 Å to 8.8 Å interval, but beyond 8.8 Å νH has a mini-
mum and starts to increase. This is also observed for the Zener anisot-
ropy factor A in Fig. 3c. In general, a material is elastically isotropic if A 
is equal to one, otherwise it is elastically anisotropic. Our plot of A in-
dicates that ZFO is not isotropic, in agreement with experimental results 
of Li or Lewis (see Table 2). 

We also compare to the Murnagham’s equation, which is an empir-
ical functional form of the third-order representation of the energy as a 
function of volume and pressure, and that can be used to calculate the 
derived structural properties [49]. It has the form 

E(V)=E0 −
B0V0

B′
− 1

+
B0V
B′

[
(V0/V)

B′

B′
− 1

+ 1

]

, (13)  

where E0, V0, and B0 are the total energy, volume, and bulk modulus at 
zero pressure of the unit cell. The derivative B′

= dB/dP is usually 
assumed to be a constant, B′

0, in the derivation of Murnagham’s equation 
(13). Fig. 4 shows the plots of the bulk modulus and its derivative (inset 
plot) versus pressure, as predicted by the Buckingham potential for a 
ZFO-normal spinel. Although the evolution of the bulk modulus with 
pressure is almost linear, B(P) = B0 + B′

0P , i.e. it can be approximated 
by a straight line of slope B′

0 = 3.5 between points P1 and P2. Note that a 
better approximation is to consider B′

(P) ≈ ΔB/ΔP as in the inset figure. 
These approximations are used to plot Murnagham’s equation, using a 
cubic spline interpolation, and then comparing to the energy found with 
the Buckingham potential. We observe that the later approximation of B′

performs better. 

3.3. Inversion degree: normal vs partial ZFO systems 

To better understand the behavior of the ZFO Buckingham potential, 
we carried out a study of the mechanical properties as a function of the 
inversion degree x. Data were averaged over 400 simulations, each with 
a different random choice of cationic distribution in octahedral sites. 
Fig. 5a shows the x-dependence of the lattice parameter and the energy, 
with the bar showing the standard deviations observed over the 400 
realizations. As the inversion degree increases, a reduction of the lattice 
parameter takes place with a consequent energy cost given in Fig. 5b, 
thus destabilising the partial inverse spinels when compared to the 
normal one. This is in agreement with experiment, where a lattice 
parameter of 8.441(7) Å for a normal ZFO and a smaller value of 8.377 

Table 3 
Vacancy formation energies, EV (eV), for normal and inverse (Inv: x = 1) ZFO 
spinels. For the inverse box 1 × 1 × 1 the average is over 10 samples (or 560 
ions), and for the others only one sample is used and averaging over the total 
number of ions.  

Vacancy Zn Fe O 

Buck 1 × 1 × 1 4.48 4.88 1.80 
Buck 4 × 4 × 4 5.79 7.68 3.03 
Buck 10 × 10 × 10 5.99 8.11 3.22 
Buck 1 × 1 × 1(Inv) 2.19 ± 0.31 6.30 ± 1.34 1.55 ± 0.69 
Buck 4 × 4 × 4(Inv) 3.52 ± 1.24 8.41 ± 2.29 2.48 ± 1.76 
Buck 5 × 5 × 5(Inv) 3.57 ± 1.52 8.54 ± 2.55 2.53 ± 1.96 
DFT [13,51] 1.99 5.46 7.07  

Fig. 8. Vacancy formation energies EV as a function of the lattice parameter (bottom) and pressure (top) for six different box sizes for the ZFO normal samples. 
Dashed lines indicate the zero pressure limit. n = 1, means a vacancy per cell whereas n = 6 means a vacancy per 63 cells. 
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(6) Å for a partial inverse with x = 0.59 were reported [6]. The standard 
deviation associated with the disorder is maximal at around x = 0.6. 
These reduce with larger box sizes and resulting self-averaging. 

A similar study was done for the elastic constants and the rigidity 
moduli. The results are shown in Fig. 6. These vary relatively in the 
interval: the maximum variation for C12 is ~20% whereas for C11 it is 
~6%. However, a more detailed view as shown in Fig. 6, tells us that C11 
exhibits a parabolic behavior, being symmetric with respect to x = 0.5, 
whereas C12 and C44 increase with x. A similar behavior is observed for 
the bulk moduli. 

For the partial inverse spinels, the potential predicts a ductile 
behavior as shown by the analysis of the Pugh ratio where B/ G >

1.75[20]; see Fig. 7. In fact, the averages follow a quadratic fitting, B/
G = 0.2x2 + 0.04x + 1.8. The Zener anisotropy factor behaves almost 
linearly in the interval, following the equation, A(x) = 0.52x+ 1.51.

We conclude that elastic constants, bulk moduli and lattice param-
eter are relatively sensitive to the degree of inversion (e.g. in Fig. 6b we 
observe that C44 has the largest variation of ~16% when changing from 
normal to inverse structure). However, these properties are relatively 
insensitive to fluctuations, which in all cases are smaller than ~6%. 

3.4. Vacancy formation energies 

The vacancy formation energy EV is the energy needed to create a 
vacancy defect in a perfect crystal, i.e., how much cohesive energy is 
needed to form a vacancy defect. For a monatomic system it can be 
computed using the well-known formula 

EV =E′

t −
N − 1

N
Et, (14)  

where E′

t is the energy computed after removing an atom and relaxation 
of the crystal and Et is the total energy of a perfect crystal with N atoms 
also obtained after relaxation of the system. However, in spinel systems, 
like in concentrated alloys, different ion types contribute with different 
fractions to the energy. Therefore, we correct the previous formula by 
considering the fraction contribution of each ion type 

EV =E′

t −
N1 − 1

N1
Et1 − Et2 − Et3 =

(
E′

t − Et
)
+

Et1

N1
, (15)  

where Eti are total energies by ion type i in the perfect crystal and N1 is 
the number of ions of type 1 where the vacancy is created, with Et =

Et1 + Et2 + Et3 and N = N1 + N2 + N3. The predicted EV for the ZFO 
spinel are summarized in Table 3 and compared to DFT predictions [13]. 
In that DFT work, EV is computed using the formula 

EV =
(
E’

t − Et
)
+ EX, (16)  

where EX is the reference energy of one ion X obtained from its pure 
crystal, bcc for Fe, hcp for Zn and for O, half the energy of the O2 
molecule: 1

2 E(O2) [50]. EX can also be interpreted as the chemical po-
tential of ion X [51]. EX cannot be computed with (16) because for 
cation-cation interactions we only have repulsive terms. However, 
comparing to (15) we see that EX ≈ Et1/N1 taking into account the spinel 
structure. 

The first observation is that EV is not well predicted by using a box of 
1 × 1 × 1 and it is even questionable for a size of 4 × 4 × 4. The DFT 
results are thus also questionable because of the size cell used (2 × 2 × 2 
[13]). Interestingly, EV(Fe) is the most affected by the size. Indeed, our 
results show that a larger cell of 10 × 10 × 10 is required to warrant a 
good convergence for this property. Also, It is observed that Buckingham 
predicts EV(O) ≤ EV(Zn) ≤ EV(Fe), whereas DFT predicts EV(Zn) ≤
EV(Fe) ≤ EV(O), i.e., the Zn and Fe vacancies are more stable and the O 
vacancy is the easiest to create which is in contrast to DFT results. 

In the case of the inverse spinel, due to its random nature, EV should 
have to be computed for each ion and for different samples with the 

same inversion degree, so a distribution should be expected. Due to the 
computational cost, we have only tried with an inverse system (x = 1) 
and up to a size of 5 × 5 × 5 (minimizations over 7000 vacancies), which 
is acceptable. Stresses produced by the randomization manifest as 
fluctuations of EV up to 35% (Zn), 27% (Fe) and 71% (O) with respect to 
their means. Increasing the box size does not reduce the fluctuations, but 
the means tend to increase as in the normal spinel case. It is also 
observed that EV values for a normal spinel fall within the interval of 
error of the respective inverse cases. The same kind of fluctuations 
should be expected in DFT but their computational cost makes them too 
difficult to obtain. 

Fig. 8 clearly shows the size effects on EV when it is plotted as a 
function of lattice and pressure for six different system sizes. The results 
can be interpreted in terms of the vacancy densities: when n = 1, it 
means a vacancy per cell while n = 6, means a vacancy per 63 cells so 
there are less vacancy-vacancy interactions; as n increases EV converges 
to a fixed value. As compared to Table 3, EV (Fe) is the most affected. 

Finally, it seems that most, if not all, of the calculations presented 
here could have been carried out with DFT, perhaps by using fewer than 
400 cells to average out properties for the disordered systems. This 
would have provided much more robust predictions. The answer to this 
is not so simple. DFT could indeed have been used to get elastic prop-
erties using a small supercell. However most of the computations done 
here —especially for inverse structures— require large box sizes and 
computations of averages make the calculations impossible for DFT. 
Some of the calculations presented here for the inversion degree, 
required a cluster running for several days. In particular, in the case of 
the vacancy formation energy, the results require large box sizes 
(supercells) up to 10 × 10 × 10 impossible for DFT (and almost 
impossible for MD for the case of inverse spinel: we were only able to 
compute this particular energy in 5 × 5 × 5 unit cells due to the number 
of minimizations). Thus the need for empirical potentials and one of our 
goal was thus to check the Buckingham potentials. 

4. Conclusions 

We have used Buckingham potentials found in the literature to 
investigate the mechanical properties of ZFO spinels. The potentials 
predict the geometry of normal and partial inverse spinels in good 
agreement with the reported experimental data for the lattice and anion 
parameters. The simulations indeed predict the normal spinel as the 
most stable structure. 

For partial inverse spinel samples, a statistical randomization of the 
octahedral sites is achieved to investigate its effects over energies, the 
lattice parameter, the elastic constants and bulk moduli. In most cases 
fluctuations are smaller than 6%, indicating that the randomness of the 
cation location in octahedral sides (Zn, Fe) is not an important factor for 
the elastic constants and the bulk moduli. However, randomness has an 
important role for vacancy formation energy EV as large fluctuations of 
up to 71% (O case) are observed and in contrast to the other fluctuations, 
these do not seem to reduce with the system size. 

In contrast to DFT that predicts EV(Zn) ≤ EV(Fe) ≤ EV(O), we have 
found that Buckingham potentials predict EV(O) ≤ EV(Zn) ≤ EV(Fe), so 
O ions have the lowest EV . Also, care should be taken when interpreting 
DFT predictions of EV because a cell of size 2 × 2 × 2 is not large enough. 
In fact, we need a large box of 10 × 10 × 10 to have converged results. 
However, this large box size does not explain the discrepancies of our 
results with DFT. These differences could be due to the fixed partial 
charges as implemented here that prevent the full applicability of the 
Buckingham potentials to point defects as such vacancies, a problem 
already known for the latent heat release during adatom condensation 
[52]. Such types of problems could be treated by more sophisticated 
approaches such as Streitz and Mintmire potential [53,54], that allows 
self-consistent evaluation of charge distributions. However, no param-
eterizations are known yet for this ternary system. 

The potential predicts that deformations of up to ±6% can produce 
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pressures of up to 50 GPa, and that the normal spinel at zero pressure is 
in the limit between brittle and ductile, (B/G  = 1.77) but the partial 
inverse spinels are ductile materials. However positive pressures make 
the normal spinel to be brittle while negative values transform it in 
ductile. 

Another important aspect regarding the impacts of the synthesis on 
the physical properties of ferrites, is related to ZFO thin films. Substrate 
effects exert forces or strains on the ZFO crystalline structure and pro-
duce changes in its structural parameters. We have manufactured ZFO 
thin films by sputtering system, where the ZFO film was grown under 
Ar/O2 mixture with a ratio of 1:2, which results in a lattice mismatch 
between the film and the substrate of around 3.9%, causing an 
enhancing of the saturation magnetization for the ZFO in thin films 
unlike the samples in bulk [55]. Hence, surface studies will be done in 
the near future. 

In spite of some limitations, the combination of Buckingham po-
tentials presented here is therefore a useful tool for further studying the 
mechanical and structural properties of the important ZFO spinels under 
conditions that are unreachable by current available modeling 
approaches. 
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