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3J7, Canada   

A R T I C L E  I N F O   

Keywords: 
Moledular dynamics 
Bulk properties spinel ferrites 
Elastic constants 
MEAM 
Buckingham potential 
Morse-Buckingham potential 
Elastic constants NiFe2O4 Fe3O4 

Spinel vacancy 

A B S T R A C T   

Accurate empirical potentials for the simulation of magnetite Fe3O4 and nickel-ferrite NiFe2O4 spinel systems are 
of fundamental importance for understanding their structural stability. To better understand how existing 
empirical potentials for Ni-Fe-O systems describe the spinel physics, we perform comparisons of some of the most 
important bulk properties. Elastic constants, lattice parameters, energies and Debye temperatures are computed 
and compared with previously published data of density functional theory (DFT) and experiments found in the 
literature. We find that all the potentials predict the spinel geometry well whereas there are discrepancies in bulk 
properties. The MEAM becomes unstable at high temperature for NiFe2O4, although it gives the best prediction of 
static properties at zero temperature whereas under induced pressure or high temperature, Buckingham types 
offer more stability. In general, for static properties and if computational speed is required —and in the case of 
Fe3O4 no distinction between normal or inverse is demanded— MEAM should be preferable. However, if dy-
namics at some temperature and specific ordering are important, Buckingham types, although more computa-
tionally expensive, should be used.   

1. Introduction 

The study of spinel ferrites is important from a physical and chemical 
point of view [1]. Beyond their fundamental importance, they are used 
for several technological applications in catalysis, corrosion, adhesion at 
metal-oxide interfaces in composite materials, materials for preventing 
impurity adhesion, and identifying possible roles in spintronic devices 
and other new technologies, etc. [2]. Among those, spinel ferrites such 
as trevorite — also known as nickel-ferrite NiFe2O4 (henceforth NFO) — 
and magnetite Fe3O4 (henceforth FO) are of special interest because of 
their magnetic and electrical properties and possible applications to 
spintronics [3,4], among others. In terms of current applications, 
magnetite is one of the most important ferrimagnetic materials for in-
dustrial applications such as data storage, while trevorite have possible 
applications in the fabrication of antennas and batteries [5,6,7,8,9]. 
Beyond those, spinel structures have potential applications in 

permanent magnets, microwave absorbers, chemical sensors, biomedi-
cine, etc. [10,11]. 

Both NFO and FO present a spinel structure of the form AB2O4  (Fd 3 
m, no. 227) [12], with a unitary cell that counts 56 ions, where O ions fill 
32 anions O-sites while cations (Ni or Fe) fill 8 tetrahedral A-sites and 16 
octahedral B-sites. In normal spinels, A-sites are filled with A-ions and B- 
sites with B-ions whereas inverse spinels represent structures where A- 
sites are filled with B-ions and B-sites are filled randomly with A-ions 
and B-ions. Experimentally, the Mössbauer spectroscopy is one of the 
most reliable methods to determine the iron cation and anion distribu-
tion. High resolution X-ray diffraction can also determine the distribu-
tion as well as the geometry of spinels using the Rietveld refinement 
[13]. 

Due to the large unit cell and long-range interactions, the theoretical 
characterization of these materials, including defect diffusion, extended 
defects, migration and surface energies, and more, requires handling 
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systems counting many hundreds to many thousands of atoms and more, 
which make them unsuitable for ab initio approaches. It is therefore 
necessary to turn to empirical potentials, which must be able to describe 
accurately the physics involved. A review of the literature reveals only a 
handful of potentials that could be suitable for molecular dynamics 
(MD) or kinetic Monte Carlo (KMC) simulations. Yet, no comparison 
regarding the range of applicability of these potentials is available, 
which limits progress in this field. 

For trevorite NFO we consider the following potentials: Buckingham 
with two parameterizations [14,15,16], Buckingham-Morse [17] and 
the modified embedded atom method potential with first nearest- 
neighbors interactions (1NN-MEAM) parametrized by Ohira [2]. We 
also test two density functions proposed by Baskes [18]. There are other 
potentials for Ni–Fe–O systems but these are not appropriate for NFO 
or FO spinels. For instance, the charge transfer ionic–embedded atom 
method potential for the O–Al–Ni–Co–Fe [19] has been tried, but is 
not considered here as we find that it does not predict stable spinels. 
Also, Lee’s web [20] page offers some parameterizations with the 2NN- 
MEAM formalism where 2NN means including second nearest-neighbors 
interactions and the corresponding bibliography for pure systems like 
Ni, Fe, O and mixed Fe–Ni [21]. However, parameters for Ni–O and 
Fe–O bonds are not given and using Ohira’s parameters for these 

binaries, we do not recover the correct structure after minimization, 
even though MEAM is designed to fit to experimental parameters for 
mixed types Fe–Ni, Fe–O and Ni–O. In recent papers [22,23], Lee’s 
group proposed an interesting formalism where they combine 2NN- 
MEAM with a charge equilibration (Qeq) concept to overcome short 
range problems in ionic systems, but they do not have parameterizations 
for Ni–O or Fe–O interactions yet. 

In the case of magnetite FO, we assess 1NN-MEAM and Buckingham 
potentials. We have also found a Fe–O Tersoff potential [24], however 
it does not properly describe magnetite, but it works well for other al-
lotropes. There is also found an embedded atom method (EAM) potential 
combined with the charge equilibration method [72]], which allows 
more realistic simulations as charges are not fixed, although this model 
is not used here.The mechanical properties of FO and other Fe-oxides 
can been also studied using the GULP package [25] with a shell model 
potential [26]. However, if only core-core interactions are considered, it 
resumes to Buckingham types used here. 

The main goal of this work is to compare these different empirical 
potentials as they are applied to trevorite NFO spinel and magnetite FO 
spinel systems. More specifically, we assess whether these short-range 
and long-range potentials are able to describe the main structural 
properties of the spinel systems NFO and FO. To do so, we compare the 
various potentials to density functional theory (DFT), experimental re-
sults reported in the literature and between themselves. 

Our simulations are performed using the Large-scale Atomic/Mo-
lecular Massively Parallel Simulator (LAMMPS) [27]. In this paper, we 
focus on the lattice constant a, the anion parameter u, the elastic con-
stants and their derived quantities: bulk modulus B, Poisson ratio ν, ri-
gidity modulus (or shear modulus) G, Young modulus E and the Zener 
anisotropic factor A; all at zero temperature. We also evaluate the va-
cancy formation energy as vacancies are one of the most important type 
of defects in solid materials [28]. Finally, we check spinel stability for 
temperature ranging from 100 K to 2000 K. Comparing results for these 
various properties allows us to make recommendations as to which 
potential, if any, is most appropriate for specific research questions. 

2. The implemented empirical potentials 

A list of the potentials found for Ni–Fe–O systems is summarized in 
Table 1. Below, the description of the potentials implemented here with 
spinel ferrites NFO and FO. 

2.1. Buckingham types 

The simplest way to describe a spinel is by using a combination of a 
Coulomb pair potential and Buckingham empirical potentials. The 
anion-anion and anion-cation interactions can be handled by 

Table 1 
Potentials found for Ni-Fe-O systems and tested with spinel ferrites NFO and FO. 
There are three versions of 1NN-MEAM: Ohira’s papers [2,18] use, ρ =

ρ0
2

1 + e− Γ, alternatively Baskes [39] proposes ρ = ρ0
̅̅̅̅̅̅̅̅̅̅̅̅
1 + Γ

√
, which is tested 

here with Ni or Fe or both; O always uses ρ = ρ0
2

1 + e− Γ (for details see Section 2 

below).  

Spinel ferrite NFO Magnetite FO  

1. Buckingham (Buck-1 params) [14].  
2. Buckingham (Buck-2 params) 

[15,16].  
3. Buckingham-Morse (Buck-Morse 

params) [17].  
4. 1NN-MEAM-1 (For all ρ =

ρ0
2

1 + e− Γ) [2,18].  

5. 1NN-MEAM-2 (For Ni, ρ =

ρ0
̅̅̅̅̅̅̅̅̅̅̅̅
1 + Γ

√
) [2,39].  

6. 1NN-MEAM-3 (For, Ni, Fe, ρ =

ρ0
̅̅̅̅̅̅̅̅̅̅̅̅
1 + Γ

√
) [2,39].  

7. EAM-SM (Embedded atom method 
Streitz-Mintmire). Unstable under 
minimization [19].  

8. 2NN-MEAM with Ohira’s parameters 
for Fe-O, Ni-O (no good spinel bulk 
properties) [21,2].  

1. Buckingham (Buck-3 params) [17].  

2. 1NN-MEAM-1 (For Fe,ρ = ρ0
2

1 + e− Γ) 

[2].  
3. 1NN-MEAM-2 (For Fe,ρ = ρ0

̅̅̅̅̅̅̅̅̅̅̅̅
1 + Γ

√
) 

[2,39].  
4. EAM-SM (Embedded atom method 

Streitz-Mintmire). Unstable under 
minimization [19].  

5. Tersoff (Unstable with magnetite, 
useful for other allotropes) [24].  

6. Shell model [26]. (Not used here).  
7. 2NN-MEAM with Ohira’s parameters 

for Fe-O (no good spinel bulk prop-
erties) [21,2].  

8. EAM + Charge Equilibration (not 
used here) [72]  

Table 2 
Buckingham spinel parameters for NiFe2O4 (Buck-1, Buck-2) and Fe3O4 (Buck-2) systems.  

NFO, Buck-1 [14]. Ions adopt partial charges. 

Pair zi zj Aij(eV) ρij(Å) Cij(eVÅ6) Bij(eVÅn) Dij(eV/Å2) n r0(Å)

O–O − 1.2 − 1.2 2029.2204 0.343645 192.58 46.462 − 0.32605 3.430 1.9376 
NiO +1.2 − 1.2 12987.7832 0.203164 35.994 73.158 − 14.550 3.024 1.0274 
FeO +1.8 − 1.2 11777.0703 0.207132 21.642 104.203 − 32.110 2.670 0.9302 
FeFe, NiNi, NiFe (only Coulomb term used) 
NFO, Buck-2 ([15,16]). Ions adopt nominal charges. 
O–O [16] − 2 − 2 9547.96 0.2192 32     
NiO [15] +2 − 2 775.0 0.3250 0     
FeO [16] +3 − 2 1414.6 0.3128 0     
FeFe, NiNi, NiFe (only Coulomb term used) 
FO, Buck-3 [16]. Ions adopt nominal charges.   

Fe3+O2- +3 − 2 1414.6 0.3128 0     
Fe2+O2- +2 − 2 649.1 0.3399 0     
O2-O2- − 2 − 2 9547.96 0.2192 32     
FeFe, NiNi, NiFe (only Coulomb term used)  
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Uij(r) =
zizje2

4π∊0rij
+Aijexp

(
− rij

ρij

)

−
Cij

r6
ij
, (1)  

where 1/4π∊0 = 9 × 109N⋅m2⋅C− 2 = 14.399645eV⋅Å⋅e− 2 with e, being 
the electron charge, Aij and Cij are parameters set according to each 
atom, rij is the distance between two pair of ions. For cation-cation pairs, 
only Coulombs interactions are sufficient so Aij and Cij are set to zero. 
For the NiFe2O4 spinel two different parameterizations (Buck-1, Buck-2) 
are found in literature [14,15,16] and presented in Table 2. The first 
one, Buck-1, uses partial charges 1.2 e, 1.8 e and − 1.2 e for Ni, Fe and O 
respectively [14]. This pair potential form is proposed in Ref. [14], 
where it is used to investigate the structural properties of glasses and 
interfaces between glasses and spinel (MgAl2O4 and NiFe2O4) crystals 
through MD simulations. In that work, the authors add a correction 
short-range term at small distances to avoid unreasonable results caused 
by the Buckingham term, so this potential reads as 

Uij(r) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

zizje2

4π∊0rij
+ Aijexp

(
− rij

ρij

)

−
Cij

r6
ij

if rij ≥ r0,

zizje2

4π∊0rij
+ Dijr2

ij +
Bij

rn
ij

if rij < r0,

(2)  

where Bij,Dij and n are parameters fitted for each ion. A better choice 
could be the universal ZBL potential [29], which offers a more accurate 
description of short distance interactions (although it requires an in-
termediate spline interpolation between the two functions). This 
correction can be important in collisions where interactions at short 
distances are relevant, or in KMC simulations of diffusion of interstitial 
atoms where the closest distance between two pairs of atoms should be 
observed at saddle points, but for problems treated here like vacancy 
diffusion or computing of the elastic constants it can be safely ignored. 
The r0 term is not given by the authors, but it can be easily computed 
using the Newton-Rapson method; this term is also given in Table 2. 

The second parameterization, Buck-2, adopts formal charges of 2 e, 3 
e and − 2 e for Ni, Fe and O respectively and is taken from Ref. [15] 
(Ni2+–O2– interactions) and Ref. [16] (Fe3+–O2–, O2––O2– interactions). 
The parameters are also given in Table 2. 

In the case of magnetite Fe3O4, the Buckingham parameters Buck-3 
are given in Table 2 where parameters for Fe3+O2– and O2-O2– in-
teractions are the same as Buck-2. This parameterization has already 
been tested for vacancy diffusion in spinel systems in the temperature 
range from 1300 K to 2000 K and diffusion coefficients have been 
calculated from mean square displacements [16]. As before, Fe-Fe, Ni-Ni 
and Fe-Ni cation interactions are handled by a Coulomb term only. 

2.2. Buckingham-Morse 

Another potential proposed for the NFO spinel was conceived by 
adding a Morse term to the Buckingham potential [17]. This potential 
takes the form 

Uij =
zizje2

4π∊0rij
+Aijexp

(
− rij

ρij

)

−
Cij

r6
ij
+Dij

[
exp

(
− 2βij

(
rij − r*

ij

))
− 2exp

(

− βij

(
rij − r*

ij

)) ]

(3) 

Parameters (Buck-Morse) are shown in Table 3. This potential was 
originally used to simulate NiCr2O4 and FeCr2O4 spinels, however as it is 
fitted from the respective binary systems, here we test it for a NiFe2O4 
spinel. To ensure neutrality for Fe we use a charge of +1.8 instead of the 
+1.2 reported in Ref [17]. We assume that this is correct because 
Buckingham plus Morse terms give the short-range cohesion energy of 
non-ionized atoms whereas the Coulomb term corresponds to the ioni-
zation (how much charge is removed from a neutral atom). The same 
approximation is applied by Oliver et al. Ref [15] for interactions of 
Ni2+/3+–O2–, in nickel oxides. This potential fails at short distances ≲ 1 
Å, but is suitable for problems involving stable structures and energy 
minimizations. 

2.3. Modified embedded atom method (MEAM) 

The MEAM potential [30,31] is a variation of the embedded atom 
method (EAM) [32], which includes angular dependent interactions 
implemented via the electron density term. There are several formal-
isms. The original version of MEAM was proposed by Baskes [33] and is 
now known as 1NN-MEAM. There is a second one called second-nearest 
neighbor modified embedded-atom method (2NN-MEAM) developed by 
Lee and collaborators [34,35]. Although the functional form of the 
MEAM potential remains the same, through the years several specific 
functions have been proposed. For example, some have introduced 
additional terms to describe the electronic density [36] and reproduce 
the universal equation of state —the Rose form [37]— which is used in 
the reference structure construction [33,34,35]. The Rose form is 

Eu(R) = − Ec
(
1+ a* + da*3)e− a*

, (4)  

a* = α
(

R
re
− 1

)

, (5)  

where R is the distance between the interacting atoms in the reference 
structure. The parameters Ec, re, B, and Ω are the cohesive energy (or 
sublimation energy), the equilibrium distance used to fit the properties 
of each atom, the bulk modulus and the atomic volume, at the reference 
structure, respectively; d is a variable parameter, which for older 
bibliography is set to zero (for example the first papers of Baskes [33,34] 
or even some recent papers[38]). The parameter α is known as the 
exponential decay factor for the universal energy function. Some reports 
do not give α but rather provide the bulk modulus B, as they are related 
by 

α =

̅̅̅̅̅̅̅̅̅̅̅
9BΩ
Ec

.

√

(6) 

Generally, all these parameters can be obtained from experiments or 
DFT. In the case of spinel systems, only few papers have been found with 
this potential. Specifically, we consider the 1NN-MEAM versions of 
Ohira et al. [2,18] for NFO and FO spinel systems. The background 
electron density implemented in Ohira’s parameterization, labelled as 
MEAM-1 is 

ρ = ρ0
2

1 + e− Γ, (7)  

where ρ0 is a scaling factor and the ratios between atomic electron 
densities of the constituent elements are required (for pure systems they 
can be set to one) [33,34], Γ, is the effect of the angular terms given by 

Table 3 
Buck-Morse parameters for NFO [17], the charges are +1.2 for Ni, +1.8 for Fe, 
and − 1.2 for O.   

A (eV) ρ(Å) C 
(eVÅ6) 

D (eV) β 
(Å− 1) 

r* 
(Å) 

O–O  560.93434  0.360000 4.20 – – – 
O–Ni  284.09782  0.362661 – 2.4196868 2.00 1.80 
O–Fe  118.05851  0.416163 – 1.3120262 2.00 1.80 
(Ni, Fe)– 

(Ni, Fe)  
113.63134  0.482105 – – – –  
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Γ =
∑3

i=1
t(i)

(
ρ(i)

ρ0

)2

, (8)  

where t(i) are adjustable parameters and ρ(i) is the partial electron den-
sity as defined in Baskes [31,39]. Another possibility is 

ρ = ρ0

̅̅̅̅̅̅̅̅̅̅̅̅
1 + Γ

√
, (9)  

however, according to Baskes, this form has the inconvenient that it 
yields imaginary electron densities for Γ < 1 which is possible if any of 
the t(i) are less than zero. We tested this form with Ni (labelled as MEAM- 
2) and with Ni and Fe (labelled as MEAM-3); O density is not changed. 
The results are almost identical for the stiffness constants but these 
representations have a significant impact on vacancy formation energies 
as will be shown in Section 4.5. 

Two sets of parameters are required in the MEAM formalism. The 
first one has thirteen potential parameters for every unitary element (Ni, 
Fe, O) and they are listed in Table 4. The parameters re, Ec,α, are 
already explained above, A is the scaling factor for the embedding en-
ergy, β(k) are the exponential decay factors for the atomic densities and 
t(k) are the weighting factors for the atomic densities. In our LAMMPS 
implementation, we have used the default averaging rule for t(i)

parameters. 
The second set of parameters contains the information for the bonds 

Fe-Ni, Fe-O and Ni-O, as explained above, and are given in Table 5. In 
general, each bond requires approximately thirty independent parame-
ters to describe the MEAM potential formalism. Most of them are the 
Cmin(i, j, k) and Cmax(i, j, k) many-body screening terms which are set to 
their default values of 2.0 and 2.8, because Ohira’s parameterization is 
done for the 1NN-MEAM proposed by Baskes [31]. This approach 
reduced the number of parameters to three for each binary reference 
structure, Ec

ij, re, α or B (they can also be obtained from experiments or 
DFT works). We also fit the additional MEAM-LAMMPS-parameters to 
match the old version of DYNAMO code as described in the LAMMPS 
manual. The sublimation energy for a reference structure of a mixed 
type is defined by 

Ec
ij =

Ei
c + Ej

c

2
− Δij, (10)  

where Ei
c is the sublimation energy of atom type i and Δij (eV/atom) is 

the heat of formation of the reference structure, Ei
c or Δij. 

We test these parameterizations of Fe and O for the simulations of 
magnetite FO; in contrast to the Buckingham FO potential, the MEAM is 
not able to distinguish between Fe2+ or Fe3+ ion types; their distinction 

is then only given by their occupation crystallographic site: tetrahedral 
(A) or octahedral (B). 

3. Procedure 

3.1. Sample construction 

As stated in the introduction, ferrites are described by the general 
formula AB2O4 (see Appendix A for more details). For nickel-ferrite 
NFO, in the normal spinel case, Ni and Fe fill A and B sites respec-
tively, in the inverse spinel the Fe atoms fill 8 A-sites and Ni and Fe fill 
randomly the 16B-sites. The case of the magnetite FO is similar. In a FO 
inverse spinel half of the Fe3+ ions occupy the cation tetrahedral A-sites 
and the rest (Fe2+ and Fe3+) occupy randomly the octahedral B-sites (the 
superscript is the charge used for Coulomb interactions. From the 
experimental viewpoint, the most chemically stable structure of NFO 
and FO is the inverse spinel structure. However, in this study, it has been 
considered important to analyze the behavior of the simulations of these 
compounds when their structures have a normal and inverse 
configuration. 

Properties of a perfect crystal such as elastic constants, bulk 
modulus, shear modulus and cohesive energy are computed for each 
potential by using a 1 × 1 × 1-unit cell. This size is enough because 
periodic conditions produce images which substitute the need of a larger 
supercell. However, for vacancy formation energies a larger supercell of 
10 × 10 × 10 unitary cell is required to account for the effects produced 
by the stress associated with vacancy defects. 

3.2. Minimization procedure 

Minimizations can be done with the conjugate gradient (CG) algo-
rithm or the Fast Inertial Relaxation Engine (FIRE) algorithm [40]. Both 
algorithms should properly stop a minimization when either energy or 
force tolerance is lower than a predefined value. The procedure to test 
our potentials is the following: first, for a given ideal spinel sample, the 
system is relaxed at a fixed lattice constant (chosen as the experimental 
one of 3.34 Å) to determine whether the system keeps the spinel struc-
ture. Second, we relax the system at constant zero pressure to obtain the 
relaxed lattice parameter. Third, elastic constants, bulk and shear 
modulus, cohesive energy and vacancy formation energies are computed 
for each potential with the lattice parameter obtained previously. 

Long-range interactions can be handled via particle–particle particle- 
mesh (PPPM) or the Ewald methods [41] (the Wolf algorithm can be 
used [42,43], but the method exhibits poor performance). Computations 
of the elastic constants —in contrast to computation of the vacancy 
formation energy— are problematic because the algorithm depends on 
minimizations where not only the energy, but the force must be lower 
than predetermined tolerances. Relaxations that include this Coulombic 
part are problematic because simulations may stop before reaching the 
predefined force tolerance, i.e., the minimization procedure may stop 
because the algorithm is unable reduce the energy (from one step to the 
next one, the code stops if the change in energy is lower than the ma-
chine precision although the force is not yet lower than the tolerance). 
To avoid this problem, in the Ewald (or PPPM) sums, three parameters 
must be carefully chosen: the damping parameter α, the accuracy ∊ewald 
(the desired relative error in forces) and the cut of a distance rc. For 

Table 4 
MEAM parameters for Ni, Fe, O: The cohesive energy Ec (eV), the equilibrium nearest neighbor distance re (Å), the exponential decay factor for the universal energy 
function α, the scaling factor for the embedding energy A, the exponential decay factors for the atomic densities β(i), the weighting factors for the atomic densities t(i)

and the atomic density scaling ρ0.   

Ec re α A β(0) β(1) β(2) β(3) t(0) t(1) t(2) t(3) ρ0  

Ni 4.45 2.49 4.99 1.10 2.45 2.20 6.00 2.20 1.00 3.57 1.60 3.70 0.46 
Fe 4.29 2.87 5.07 0.89 2.94 1.00 1.00 1.00 1.00 3.94 4.12 –1.50 0.90 
O 4.59 1.21 4.59 0.80 2.31 2.26 2.07 1.52 1.00 11.80 8.40 –6.20 2.60  

Table 5 
MEAM potential parameters for mixed elements [2,18,31,33], reference struc-
tures are L12 (Ni3Si type) and B1 (NaCl type).    

Fe-Ni  Fe-O  Ni-O  

Ref struct L12 B1 B1 

Δij − 0.0110 − 1.3650 − 1.2465 
re 2.5031 2.1475 2.0842 
α 5.2000 4.0000 4.1000 
d 0.0 0.0 0.0  
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Buckingham and Buckingham-Morse potentials, a cut-off distance for 
computing long-range interactions into the k-space is set to rc = 16 Å. 
Lower values show problems of convergence or do not recover the spinel 
structure. The precision for Buckingham is set to ∊ewald = 10− 10 with 
Ewald method, this value is too small compared to usual values reported 
to be around ∼ 10− 4 for MD simulations at other temperatures and 
larger box-sizes, however, minimizations here require more precision. In 
the case of the Buckingham-Morse, it performs better with PPPM and 
∊pppm = 10− 8. The damping parameter α is the predefined value 
computed by LAMMPS at the defined precision guarantying a full 

relaxation for the unitary cell, then we keep this value for the larger 
systems. Adding the long-range term r− 6(via Ewald or PPPM) does not 
modify the results, so only r− 1 is computed in the k-space. A force 
tolerance of 10-10 eV/Å and energy tolerance of 0.0 eV is used in all 
minimizations, except in computations of vacancies formation energies 
where the energy tolerance is set to 10-5 eV. 

4. Results and discussion 

4.1. Geometries after minimizations 

Fig. 1 and Fig. 2 show comparisons of the final structures obtained 
with different force fields after relaxation at zero pressure for the NFO 
and FO spinel systems; inverse (top) and normal (bottom). The geometry 
of the NFO normal spinel is maintained in all the simulations (Fig. 1). 
The MEAM-1 performs well for normal spinel and produces an accept-
able distortion when tested with an inverse spinel (MEAM-2 and MEAM- 
3, which use the alternative density —see Section 2.3—, have similar 
results). Buckingham and MEAM predict similar geometries for FO 
normal spinels (Fig. 2). Fig. 2 presents Buck-3 and MEAM-1 structures 
for FO inverse a spinel; since MEAM does not handle charged ions, both 
normal and inverse spinels are represented with the same structure. 

The anion parameters u associated with the potentials studied here 
—for both NFO and FO normal spinels— are systematically larger than 
the ideal value of u43m = 3/8 [12]. However, as summarized in Table 6, 
all potentials generate anion parameters in good agreement with ex-
periments. The increase in the value of u with respect to the ideal value 
u43m is expected and associated with the movement of anions along the 
[111] direction outward from the nearest A-site, while the B-site vol-
ume is compressed and consequently its symmetry [44]. For NFO, 
Rietveld structure refinement gives values of 0.388 [11] and 0.380 [45], 
in agreement with our results. Similarly, in FO, a value of approximately 
0.380(1) [46] is reported (here computed for normal spinel for 
simplicity), where the error depends on the size of the nanoparticles. 

4.2. Bulk properties at zero pressure 

Lattice parameter, energy and elastic constants for the normal and 
inverse spinels are summarized in Table 7 for NFO and Table 8 for FO 

Fig. 1. Top view along the [100] direction of the inverse (top) and normal NFO-spinel (bottom) structures after relaxation at zero pressure using Buckingham, 
Buckingham-Morse, and MEAM potentials. Ni in blue, Fe in red, O in yellow. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 

Fig. 2. Top view along the [100] direction of the inverse FO-spinel structure 
after relaxation at zero temperature and zero pressure using Buck-3 and MEAM- 
1 parameterizations. Fe2+ in blue, Fe3+ in red, O in yellow. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Table 6 
Predicted anion parameters for normal NFO and FO 
spinels (Ideal is u43m = 0.375).   

Buck-1 (NFO)  0.385 
Buck-2 (NFO)  0.388 
Buck-Morse (NFO)  0.388 
MEAM-1 (NFO)  0.390 
MEAM-1 (FO)  0.389 
Buck-3 (FO)  0.388  
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and for each potential. Due to the random nature of the inverse spinel, 
two samples are used: Inv1 and Inv2. They are also compared to 
experimental and DFT results. The polycrystalline, bulk modulus B, 
Poisson ratio ν, rigidity modulus (or shear modulus) G, Young modulus E 
and the Zener anisotropy factor A, are calculated following the Voigt- 
Reuss-Hill scheme [47,48], 

B =
C11 + 2C12

3
. (11)  

G =
GR + GV

2
. (12)  

GV =
(C11 − C12) + 3C44

5
. (13)  

GR =
5(C11 − C12)C44

3(C11 − C12) + 4C44
. (14)  

E =
9GB

G + 3B
. (15)  

ν =
3B/2 − G
G + 3B

=
1
2

(

1 −
3G

3B + G

)

= − 1+
E

2G
=

3B − E
6B

=
1
2
−

E
6B

. (16)  

A =
2C44

C11 − C12
. (17) 

According to Anderson [52], in an isotropic polycrystalline, the 

Debye temperature θD can be approximated by 

θD =
h
kB

[
3nNaρ
4πM

]1/3

vm, (18)  

where h/kB = 4.7992431 × 10− 11 K⋅s, is the ratio of the Planck and 
Boltzmann constants, n = 56 is the number of atoms in the spinel, Na is 
Avogadro’s number, ρ is the density and M is the molecular weight. vm is 
the average sound velocity given by 

vm =

(
1
3

[
2
v3

s
+

1
v3

l

])− 1
3

, (19)  

vs =

̅̅̅̅
G
ρ

√

, vl =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

B + 4/3G
ρ

√

, (20)  

where vl and vs are the longitudinal and shear (transverse) elastic sound 
velocities. Results for the Debye temperature predicted by each potential 
are also reported in Table 7 and Table 8. 

For the NFO with Buck-1, we predict a lattice constant of ~8.6 Å 
(both normal and inverse spinels) and elastic constants of C11 = 235 
GPa, C12 = 129 GPa, C44 = 95 GPa (see Appendix B for details of the 
computing). These results are slightly different from to those reported in 
Ref. [14], where authors predict a lattice constant of 8.3 Å and elastic 
constants of C11 = 249 GPa, C12 = 148 GPa, C44 = 106 GPa. These dif-
ferences may be due to a procedure not reported (DL_POLY and GULP 
codes are used in Ref. [14]), as we have repeated the computations with 

Table 7 
Spinel NFO predicted data: lattice a(Å), energy/atom Ef (eV), bulk modulus B (GPa), rigidity (shear) modulus G(GPa), Young modulus E(GPa), Poisson ratio ν, elastic 
constants, C11,C12,C44 (GPa),  anisotropic factor A and Debye temperature θD(K). Underlined are data computed from their elastic constants. Values in () mean that in 
one of directions lattice changes the last digit by that value. See Table 1 for a description of the potentials.  

NFO-Normal a Ef B G E ν C11 C12 C44 A θD 

Buck-1 8.606 − 10.843 164.57 78.28 195.97 0.30 235.69 129.00 94.83 1.78 580.5 
Buck-2 8.415 − 27.639 223.25 125.06 316.14 0.26 354.27 157.74 146.94 1.50 736.4 
Buck-Morse 8.206 − 12.156 206.39 69.48 187.41 0.35 254.09 182.54 108.13 3.02 547.9 
MEAM-1 8.514 − 7.041 142.82  78.84 199.77 0.27 244.94 91.76 80.38 0.38 588.3 
MEAM-2 8.534 − 7.032 144.35 81.97 206.77 0.26 252.82 90.11 82.38 1.01 600.2 
MEAM-3 8.533 − 7.040 143.93 80.34 203.21 0.26 251.73 90.03 80.00 0.99 594.4  

NFO-Inverse a Ef B G E ν C11 C12 C44 A θD 

Buck-1 (Inv1) 8.58(7) − 10.862 174.56 72.15 190.23 0.32 233.81 144.78 99.73 2.24 568.5 
Buck-1 (Inv2) 8.58(9) − 10.856 173.54 70.73 186.62 0.32 228.44 143.85 99.82 2.36 563.2 
Buck-2 (Inv1) 8.31(2) − 27.609 247.22 121.58 313.54 0.29  354.33 195.15 161.52 2.03 723.9 
Buck-2 (Inv2) 8.31(2) − 27.601  246.71 121.57 312.94 0.29  350.76 192.04 161.82 2.04 723.7 
Buck-Morse (Inv1) 8.14 − 12.306 216.29 96.21 251.27 0.31 311.34 167.83 117.09 1.63 638.6 
Buck-Morse (Inv2) 8.13(4)  -12.298  215.55 95.35 249.13 0.31  308.59 167.45 116.64 1.65 635.5 
MEAM-1 (Inv1) 8.2(3) − 7.040 120.43 79.66 195.56 0.23  217.81 70.5 83.93 1.14 578.9 
MEAM-1 (Inv2) 8.2(3) − 7.044 135.27 79.18 196.14  0.24  219.83 77.64 85.08 1.20 577.9 
Expt [14,49] 8.339 – 198.2 70.6 189.4 0.34 273.1 160.7 82.3/81[2] 1.46 556.3 
DFT [50] 8.43/8.36[51] − 6.636[51] 177.1 76.17 199.85 0.31 252.2 139.5 93.2 1.65 578.6 
MD-buck[14] 8.3 – 182.1 73.5 138.2 0.31 249.2 148.5 106.0 2.10 583.3 
MD-MEAM[2,18] 8.342 − 4.38 120 – – – – – 82 – –  

Table 8 
Magnetite FO predicted data: lattice a(Å), energy/atom Ef (eV), bulk modulus B (GPa), rigidity (shear) modulus G(GPa), Young modulus E(GPa), Poisson ratio ν, elastic 
constants, C11,C12,C44 (GPa), anisotropic factor A and Debye temperature θD(K). The underline is data computed here from their elastic constants. Values in () means 
that in one of directions lattice changes the last digit by that value. MEAM-1 and MEAM-2 with Inv1 give the same data as Inv2.  

FO-Inverse a Ef B G E ν C11 C12 C44 A θD 

MEAM-1 (Inv1) 8.570 − 7.505 103.43 82.8mo0 196.07 0.18 233.04 38.62 74.37 0.77 603.0 
MEAM-2 (Inv1) 8.600 − 7.502 106.02 85.36 201.89 0.18 238.39 39.84 77.16 0.78 613.2 
Buck-3 (Inv1) 8.34(5) − 27.486 240.71 119.88 308.62 0.29 347.17 189.05 158.47 2.00 724.4 
Buck-3 (Inv2) 8.350(4) − 27.480  240.4 120.39 309.27 0.28 345.51 185.87 158.59 1.99 726.0 
Expt [49] 8.396 − 4.96[24] 159.6 89.3 225.8 0.26 267.6 105.6 95.3/97[2] 1.18 625.4 
Expt [53,3] 8.396 – 185.7 ± 3.0 60.3 ± 3.0 163.3 0.35 260.5 ± 1.0 148.3 ± 3.0 63.3 ± 1.5 1.13 519.9 
MD-MEAM[2] 8.399 − 4.91 156 – – – – – 133 – – 
DFT [53] – – 187.4 48.99 135.19 0.38 242.3 159.9 55.0 1.33 470.3 
DFT [54] 8.396 –  187.4 80.00 211.14 0.32 275 ± 40 155 ± 60 97 ± 13 1.62 596.1  
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GULP in the core-core approximation and have recovered the same 
LAMMPS results in contrasts to Ref. [14]. Our elastic constants differ 
somewhat, however, from experiment of Li [49]: the best agreement is 
found for C44 (relative error of ~15%) and the bulk modulus (relative 
errors of ~12% in normal spinel and ~17% inverse). 

The Buck-2 parameterization presents the largest difference when 
compared to experimental data. Its bulk modulus is ~25% above 
experiment for the inverse and ~13% above for the normal spinels 
(shear and young moduli are also larger). 

For the NFO with Buck-Morse, the bulk modulus is ~10% higher 
than the experimental value for inverse spinel but ~4% higher for 
normal spinels. The shear and young moduli show larger discrepancies 
with the experiment and DFT, especially for inverse spinels (up to ~27% 
and ~33% larger than experiment). This is associated with the signifi-
cant overestimation of C11 and C44 as compared to experimental results. 

In general, both Buckingham and Buckingham-Morse potentials 
predict symmetrical normal-spinel structures where the components 
C11,C12,C44 are the only elastic constants different from zero. However, 
this is not the case for inverse spinel systems where the other elastic 
constants are not zero (although they are small, around ± 0.2 to ± 4 
GPa). Also, the lattice parameter displays small differences (of up to 
0.02 Å) depending on the direction (x,y,z). This is reported in Table 7, 
where for one of the directions the last digit changes; e.g. in Buck-1, 
notation a = 8.58(7) Å means that one of the lattice sizes the last digit 
changes from 8 to 7, i.e. after relaxation the unitary cell has a size of 
8.58 × 8.58 × 8.57 Å. This statistical “breaking of symmetry” is expected 
in “small” inverse systems and it is due to the random cation arrange-
ment where two type of cations are randomly distributed in the octa-
hedral sites and in contrast to a normal spinel where there is only one 
atom type in the octahedral sites; it vanishes for sufficiently large 
systems. 

While magnetite FO is only observed as an inverse spinel in nature, 

NFO crystallizes more commonly as an inverse spinel but can also form 
normal spinel. This is already predicted by Buck-1 and Buck-Morse pa-
rameterizations but Buck-2 fails as it predicts the opposite. Analogously, 
for the FO Buck-3, which shares the same parameters for Fe-O and O-O 
interactions, results are very similar to those of NFO with Buck-2 (see 
Table 7). In FO, depending on the experiment, C44 is found to be in the 
range from ~53 GPa to ~99 GPa [3], whereas the Buck-3 predicts ~158 
GPa and the MEAM potentials predict on average ~75 GPa, which is 
more in agreement with the experiments or DFT. 

Although we are unable to recover Ohira’s MEAM-1 results exactly 
with our implementation in LAMMPS (see MEAM in Table 7), our 
implementation gives the best overall results in NFO when compared 
with experimental and DFT data. However, the energy per atom, Ef, we 
find is around 60 % larger than Ohira’s. Nevertheless, it matches better 
with DFT prediction as it differs only by 6%. Furthermore, it is known 
that DFT tends to overestimate cohesive energies. The predicted elastic 
constants of the normal spinel fit better with the experimental results 
than those of the two inverse spinel samples. It seems that in Ohira’s 
work, the potential was fitted to a normal rather than an inverse spinel. 
Nevertheless, our results of inverse spinels are acceptable. The MEAM 
with inverse spinel is also affected by a random arrangement of Fe and 
Ni atoms in octahedral sites (elastic constants and bulk modulus etc), but 
the results are still in agreement with experimental data. Samples Inv1 
and Inv2 give similar results. Thus, the shuffling of Fe and Ni atoms at 
octahedral sides gives randomness and we should expect an interval of 
error in all the stiffness quantities (although not computed here). 
However, the statistical error should disappear for systems large 
enough. 

The Poisson ratio ν is proportional to the plasticity of materials and is 
therefore an indication of their stability. In the case of central forces, it is 
theoretically predicted that at zero pressure a material is stable if 
0.25 < ν < 0.50, based on the requirement that the strain energy must 

Fig. 3. Pressure as a function of the strain for a normal spinel NFO (top-left) and an inverse spinel (top-right). At the bottom magnetite FO spinel at zero temperature. 
Dotted lines are plots of the Birch-Murnaghan equation using experimental data of Table 7 and Table 8 with B’ = 4.0. 
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be positive [55,56]. This is indeed the case for the Buckingham poten-
tials but not the case for the MEAM with inverse samples. Indeed, for 
NFO, the prediction is ν ≈ 0.24 which indicates that it is unstable; be-
sides, the MEAM is not a central force due to the density term. In FO, the 
MEAM potentials predict too small C12 ≈ 39 GPa and ν ≈ 0.18 
compared to experiments, but the spinel is stable. 

4.3. Pressure and elastic constants versus strain 

It is important to know how a lattice change affects pressure and 
elastic constants. In the following simulations, pressure —computed as 
the average of the diagonal stress tensor, P = (P11 + P22 + P33)/3, see 
equation (26) in Appendix B— is plotted as a function of the strain by 
changing the lattice by a maximum of ± 4% (or ~12.5% of volume) with 
respect to the zero pressure point, and relaxing the structure. We also 
compare to the Birch-Murnaghan equation of state written as function of 
lattice parameter [57,58], 

P(a) =
3B
2

[(a0

a

)7
−
(a0

a

)5
]{

1+
3
4
(B’ − 4)

[(a0

a

)2
− 1

]}

, (21)  

where B’ is the derivative of the bulk modulus with respect to pressure, 
experimentally found to be 4 ± 0.4 for NFO and FO [57,58]. Experi-
mentally, the bulk modulus, B, can be computed by least-squares fit of 
pressure–volume to the Birch-Murnaghan equation of state, here we 
rather use the experimental data of B,B’ to plot P(a) and compare (dots 
in Fig. 3). As before, the inverse spinel is tested with the two samples 
Inv1 and Inv2 and their plots are almost identical. Comparing the po-
tentials, it is clear that while the Buckingham types have similar 
behavior (both normal and inverse spinels), with the MEAM types the 
lattice change produces a lower pressure (for instance, in the inverse 
spinel it is more than half compared to Buck-1 or Buck-Morse). There is 
no symmetry as pressure is higher for negative deformations 
(compression) than for positive deformations. All the Buckingham types 
predict a higher resistance to deformation of the lattice when tested with 
inverse spinel, in contrast to MEAM types that predict almost the half. 
For FO we observe similar results, the higher resistance to deformation is 
given by the Buckingham type in better agreement with the Birch- 
Murnaghan equation. 

Elastic constants are computed as a function of the strain with results 

Fig. 4. Computation of the elastic constants at zero temperature for a normal NFO spinel as a function of the strain (bottom axis) and pressure P (top axis).  
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shown in Fig. 4 and Fig. 5, for normal and inverse spinel structures 
respectively. The change in pressure is also shown on the top axis (for 
the inverse spinel, pressure is computed as the average of samples Inv1 
and Inv2). In general spinel structures are mechanically stable if their 
elastic constants satisfy the following stability criteria [48]: 

C11 > 0, C44 > 0, C11 > |C12|, (C11 + 2C12)〉0. (22) 

Our calculations indicate thus that these criteria are indeed satisfied 
for all the potentials investigated here. Besides, we observe that the 
spinels are anisotropic with violation of Cauchy relation satisfied, 

Fig. 5. Computation of the elastic constants at zero temperature for inverse NFO spinel and inverse FO (bottom) as a function of the strain (bottom axis) and pressure 
P (top axis). 
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C12 ∕= C44. This is also manifested by the Zener anisotropic factor. It is 
also observed that, C11 > C12 > C44, in all the cases except when MEAM- 
1 or MEAM-2 are used with the inverse samples, in that case, and in 
contrast to experiment, C11 > C44 > C12. We see also that beyond the 
limits of ± 0.04 some potentials start to predict unstable structures, e.g., 
the Buck-Morse with a normal spinel start to predict that C12⪆C11 under 
too much compression and in the case of Buck-2 we see that relaxations 
start to fail although stability criteria are still satisfied. 

For NFO, in a normal spinel we observe that, for all potentials, C11 is 

linear and all have approximately the same slope, in contrast to C12, that 
is not linear and tends to grow faster with compression. C44 is approx-
imately constant in all plots (although with Buck-2 or MEAM-1, it tends 
to decrease as box increases). For the inverse spinel, we observe similar 
results with Buckingham types, however, this is not the case for the 
MEAM types. For instance, under box compression the curves change 
their slope abruptly, indicating structural changes in the inverse spinel 
structure. Besides, depending on the sampled used (Inv1 or Inv2) C11 
and C12 have different shapes, in contrast to C44 which is not affected. 
The Buck-1 is the only potential that predicts similar results for either 
normal or inverse spinel. 

For FO, the Buck-3 potential gives similar results than Buck-2 with 
inverse spinels. In the case of MEAM-1 and MEAM-2 the results are 
similar, although the change of the density function produces a small 
variation of C11. Under positive box expansion we see that these po-
tentials predict that replacing Ni by Fe does not represent a big change 
for the mechanical properties. Experimental results in Ref. [3], predict a 
lineal behavior as a function of the pressure up to 8 GPa for the com-
ponents C11,C12,C44, which are in agreement with our results. 

4.4. Comparison of the minimum energies 

To see the effects that the volumetric change produces in energy we 
performed a series of simulations as function of the lattice parameters a 
in the interval 8.0 Å to 9.0 Å (or equivalently, vary the volume from 512 

Fig. 6. Energy minimization as a function of the lattice a for NFO (top-center) and FO (bottom). Unitary cell sample with an energy tolerance of 0.0 eV and force 
tolerance of 10-10 eV. See Table 1 for a description of the potentials. 

Table 9 
Vacancy formation energies (eV) in normal-spinel structures NFO and FO, cubic 
box system of 10 × 10 × 10 unitary cells.  

Vacancy (NFO) A-site B-site O 

Buck-1 5.03 6.52 2.25 
Buck-2 6.81 5.70 1.81 
Buck-Morse   6.48 8.13 3.38 
MEAM-1 1.57 − 25.40 9.13 
MEAM-2 1.60 − 9.84 8.67 
MEAM-3 1.58 − 9.84 8.76 
DFT-inverse [61] 0.52 1.56 –  

Vacancy (FO) Fe (A-site) Fe (B-site) O 
Buck-3   6.29 8.19 3.33 
MEAM-1 − 2.27 − 37.23 10.10  
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Å3 to 729 Å3) with steps of 0.1 Å; Fig. 6 shows the results. As before we 
used a normal and two inverse spinel samples (Inv1 and Inv2, although 
the results are similar, we see small variations of physical quantities). 

Fig. 6 shows that for NFO the potentials Buck-1 and Buck-Morse 
predict the inverse spinel as the most stable structure in agreement 
with Ref. [59]. In contrast, Buck-2 and Buck-3 predict the normal NFO 
and FO spinels as the most stable structures and they have similar results 
as a consequence that both use the same parameters for Fe3+ and O2–. 

At zero pressure, Buck-1 and Buck-Morse predict a high cohesive 
energy of more than ~10 eV/atom (see Table 7), which is too large 
compared to experimental or DFT results of ~5-7 eV/atom. It is worse 
for Buck-2 and Buck-3 (see Table 7 and Table 8), the total energies are 
more than twice than the energy predicted for Buck-1. This is a well- 
known problem of these coulombic potentials where a significant part 
of the interaction between the constituent ion arises from the Coulomb 
force between cations and anions at fixed charge [60]. The energy 
computed corresponds to the energy required to separate a crystal spinel 
into its individual ions as they no longer interact and, such a charged 
cloud has a significant Coulomb energy [60]. As a result, the lattice 
energy predicted by a fixed charge model is significantly higher than the 
experimentally measured cohesive energy, which is defined as the en-
ergy required to separate a crystal into individual neutral atoms [60]. 
Besides, these Buckingham models do not allow the simulations of 
different oxidation states or ensure charge neutrality in the crystal if the 

cation and anion composition vary and it cannot be used to study the 
structure of the interface between a metal and its oxide. The change of 
nominal charges onto partial charges was also investigated for Buck-2 
(and Buck-3) with similar results, but it predicts a larger lattice 
parameter of 10.2 Å, although this change reduces the energy of the unit 
cell to − 8.34 eV/atom. Distortions at the end of some plots indicate the 
starting of loss of spinel structure due to the high pressure. 

As can be observed in Fig. 6, for MEAM types, the energy only varies 
by around ~0.2 eV over the full interval. For NFO this potential per-
forms better for normal than inverse structures. For instance, a small 
discontinuity (of around ~0.05 eV) in the energy relaxation is evidenced 
for the inverse spinel sample Inv2, due to small distortions in the lattice 
positions, although the spinel structure is still preserved. This distortion 
indicates that the topology of the MEAM potential surface has some 
roughness, thus there exists at least two minima that are close and the 
code (CG or FIRE) minimizes to one if the lattice is lower than 8.2 Å and 
to the other if it is higher. Results as the final energy, lattice or elastic 
constants with MEAM (shown in Table 7), are not too much altered 
when the density is changed to the alternative density form ρ =

ρ0
̅̅̅̅̅̅̅̅̅̅̅̅
1 + Γ

√
(compare dashed lines-MEAM-2 to full lines-MEAM-1 in Fig. 6, 

MEAM-3 is not shown). 

Fig. 7. Average lattice parameter, a =
̅̅̅̅̅̅̅̅̅̅
lxlylz

√
, (left) and enthalpy (right) as a function of temperature for normal NFO (top), inverse NFO (center) and inverse FO 

(bottom); data taken every 50 K. Averages taken every 2000 steps, first 50 000 steps are ignored. Dots are experimental data reported in Ref. [62,63]. 
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4.5. Ni, Fe and O vacancy formation energies 

The vacancy formation energy EV is the energy needed to create a 
vacancy defect in a perfect crystal, i.e., how much cohesive energy is 
needed to form a vacancy defect. For monoatomic systems it can be 
defined as 

EV = E’
t −

N − 1
N

Et, (23)  

where E’
t and Et are the energies computed with and without a vacancy 

as obtained after a relaxation of spinel crystals with (N − 1) and N atoms. 
However, in ternary systems there are three different atomic types that 
contribute with different fractions to energy, thus this formula must be 
corrected to consider the fraction of each type 

EV = E’
t −

N1 − 1
N1

Et1 − Et2 − Et3, (24)  

where Eti are total energies by ion type i in the perfect crystal and N1 is 
the number of ions of type 1 where the vacancy is created, with Et =

Et1 +Et2 +Et3 and N = N1 + N2 + N3. For simplicity EV is only computed 
for a normal spinel, the results are shown in Table 9. Buck-1 and Buck-2 
predict similar results, but Buck-Morse predicts larger values. In 
contrast, the MEAM potentials predict negative formation energies, an 
unphysical result as it means that an imperfect structure with a vacancy 
is more stable than a perfect crystal. Yet, while these MEAM types seem 
to produce unphysical thermodynamic situation with respect to vacancy 
concentration, they predict stable structures under minimizations, 
which means that systems with defects can nevertheless be considered, 
with care, using these MEAM types. Besides, this also holds for finite 
temperature and especially for the MEAM-1 with FO system as corrob-
orated in the next section. 

4.6. Thermal effects on the lattice parameter at zero pressure 

Finally, NPT simulations are done for temperatures from 100 K to 
2000 K, in steps of 50 K, each simulation of 1 ns (1 million steps, each of 
1 fs) with a box of 4 × 4 × 4; the results are shown in Fig. 7. We also 
compare lattice to experiments (see dots) [62,63] (in the case of NFO, 
we use the reported fitting equation for the thermal expansion, α, to get 
a = a0(1+αΔT)). The target pressure is set to zero, but it is well known 
that in NPT simulations pressure fluctuates. For instance, if Buck-1 is 
used, fluctuations vary from ~0.1 GPa at 100 K up to ~0.3 GPa at 2000 
K and similarly for the MEAM, so we report the enthalpy per atom rather 
than the total energy. Buckingham type potentials predict stable struc-
tures as the temperature rises beyond 2000 K, however the experimental 
melting point of NFO is 1860 K [64]. The Buck-Morse potential starts to 
deform the normal spinel around that value, but it fails for the inverse 
spinel. The MEAM predicts that the normal spinel becomes unstable 
after 800 K (and 650 K for MEAM-2). The case of inverse spinel with 
MEAM is more critical, the structure starts deforming after ~300 K, 
meaning that this potential is unstable for NFO inverse spinel structures. 
However, the MEAM potential performs better for FO systems and the 
result is similar to the one found by the Buckingham potential. The 
MEAM FO predicts structure changes after ~1600 K while Buckingham 
does it after ~1800 K, close to the FO experimental melting point of 
1856–1870 K [65,66]. Nevertheless, we emphasize that it is known that 
in general MD tends to overestimate the melting point, typically by up to 
20% [67,68]. 

5. Conclusions 

A literature research among the existing potentials for ternary Ni-Fe- 
O systems is done and a list of potentials useful for spinel ferrites NFO 
and FO is presented. Then, a comparison of static and dynamic bulk 
properties of these selected different empirical potentials, namely 

Buckingham, Buckingham-Morse and MEAM is presented. Special 
attention is given to properties based on minimizations at zero tem-
perature. For the description of the geometrical properties all the po-
tentials behave acceptably well, e.g., the anion parameters predicted are 
in good agreement with DFT and experimental observations. Under 
induced pressure, Buckingham types offer more stability than the MEAM 
types (in the interval studied —up to ± 4 % lattice variation— all the 
potentials predict stable spinel structures). For the elastic constants, 
depending on the potential, acceptable differences can be observed 
when comparing to DFT and experimental reports. It is found that in an 
inverse spinel the occupancy order in octahedral sites affects the elastic 
constants. 

For NFO systems: the Buckingham potentials with Buck-1 and Buck-2 
parameterizations reproduce the known problem of predicting very high 
cohesive energies even though they reproduce the right geometry. Buck- 
1, for its part, correctly predicts the inverse spinel as the most stable 
structure, in contrast to Buck-2 which predicts the contrary. Further-
more, the Buck-2 cohesive energy is more than two times larger than the 
Buck-1 (due to the use of full charges). Also, its Debye temperature 
prediction is too large compared to experiment (in part because C44 is 
too large). Buck-Morse correctly predicts that the inverse spinel is the 
most stable structure and the cohesive energies are similar to those 
predicted by Buck-1. In this case, the prediction of elastic constants and 
derived bulk properties are better than Buck-2 but worse than Buck-1. 
During energy minimizations, the MEAM variants are good for 
normal-NFO spinels, as it has the best behavior of all at zero pressure 
and the elastic constants have the best agreement with DFT and exper-
imental results. However, at higher temperatures the normal spinel 
becomes unstable and the structure is lost if the temperature is superior 
to 800 K for MEAM-1 or 650 K for MEAM-2. The MEAM potentials fail 
with inverse spinel structures, as they are unstable if temperature is 
different from zero. That instability could be a consequence of the lack of 
a long range term. The MEAM variants fail to correctly predict the va-
cancy formation energies, nevertheless they produce stable structures 
for NPT simulations of crystals without defects. 

For FO systems: MEAM potentials perform well but their main failure 
is the impossibility to distinguish charge allotropes of iron (Fe2+ or 
Fe3+). Despite the fact that the MEAM potentials predict too small C12 of 
~39 GPa and small Poisson’s ratio of 0.18 compared to experiments, the 
potential seems to be stable at higher temperatures. This is a conse-
quence of the embedded energy, which makes the potential non-central. 
It also fails to correctly predict vacancy formation energies. Despite this 
issue, NPT simulations with crystals without defects up 1 ns and up to 
2000 K, predict stable structures. Buck-3 for FO predicts that the normal 
spinel is more stable than the inverse, although the FO normal spinel 
does not exist in nature. For the elastic constants and derived bulk 
properties, Buck-3 predicts too large values (e.g. it has the largest 
Debye’s temperature prediction). 

In general, for FO we recommend MEAM for general cases where 
speed is required but no distinction between normal or inverse is 
demanded. For NFO we only recommend MEAM for static or low- 
temperature simulations with a perfect normal spinel. However if this 
is not the case, the Buckingham types are the best option but they can be 
up to ten times more computationally costly. In any case care should be 
taken with defects. 

Finally, more research to find new empirical potentials that better 
describe the bulk properties of spinel systems of FO and NFO is still 
needed because, as shown in this paper, each potential discussed here 
give only a partial description of the structure. 
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Appendix A. Spinel Geometry 

In general, the detailed atomic arrangements in a spinel unitary cell is described by three structural parameters: first, the lattice parameter, a; 
second, the anion parameter, u; and third, the cation inversion parameter, i. More exactly, for cations X and Y, the spinel chemical formula can be 
written as follows [12], 

(Yq+
i Xp+

1− i)[X
q+
i/2 Yp+

(2− i)/2]2O4, (25)  

where () and [] denote A and B sites respectively. The variable i is the inversion parameter and it specifies the fraction of A-sites occupied by majority 
ions. For normal spinel, i = 0; for random cation arrangement, i = 2/3, and for inverse spinel, i = 1 (here we limit our study to normal and inverse 
system only). The ideal unitary cell sample is shown in Fig. 8 for two different representations: on top, with origin at 43 m point symmetry and, on 
bottom, at 3 m, where u43m = 3/8 = 0.375 and u3m = 1/4 = 0.250 respectively and they differs by a simple translation, u43m = u3m + 1/8. According 
to the conclusions of Ref. [12], the lattice parameter a should depend on the average effective cation radius and without significant dependence on the 
specific cation arrangement, but u should be highly dependent on the cation inversion parameter i. Thus, in order to predict anion parameters in 
spinels, prior knowledge of the cation arrangement is required. Good empirical potentials for spinels should be able to describe also this fact. 

For comparing the geometries found with the different potentials, we look at the radial distribution function (RDF), which is shown in Fig. 9. In the 
interval [0, a] there are 22 different peaks; only the first five are described: The first peak are the four nearest AO neighbors distances (

̅̅̅
3

√
a/3) forming 

a tetrahedral site and the second peak, the six nearest BO neighbors distances (a/4), forming an octahedral site. The third peak are second nearest 
neighbors distances BB (

̅̅̅
2

√
a/4) (same distance than OO), The four peak are second nearest neighbors distances AB and AO (

̅̅̅̅̅̅
11

√
a/8). The fifth peak 

are AA and second neighbors BO distances (
̅̅̅
3

√
a/4). 

Fig. 8. Description of the ionic positions in 
spinel depends on the choice of the origin in 
the Fd3m space group. Two different equi-
points with point symmetries 43 m (on top) 
and 3 m (on bottom) are possible choices for 
the unit-cell origin [12]. AB2O4 has 8 tetra-
hedral cations A (red), 16 octahedral B cat-
ions (blue) and 32 anions (yellow). In left the 
corresponding top view images on (100) 
direction. (For interpretation of the refer-
ences to colour in this figure legend, the 
reader is referred to the web version of this 
article.)   
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The conventional choices for the unit-cell origin in spinel are either 43 m, on an A-site cation or 3 m on an octahedral vacancy (the latter is an 
inversion center). Table 10 lists the fractional coordinates of the spinel cubic unit cell for two choices. The spinel has a fcc unitary cell with coordinates 
(0,0,0) and a(0.5,0.5,0.5), the unitary cell is simply created by adding to these points the fractional coordinates. 

Appendix B. Elastic constants 

The computational procedure is implemented as a script in the LAMMPS examples. The six stress components are calculated from a summation 
over all N particles in the system [69,70], 

Pij =
1
V

∑N

k=1
mkvkivkj +

1
V

∑N’

k=1
rkifkj, (26)  

with i and j = x,y,z. The rki, vki and fki are the vector components in the direction i of the position, velocity and force for the atom k. N’ means that the 
simulation includes periodic image atoms outside the central box because periodic boundary conditions are used. The first sum is zero because, vki =

0, in minimizations. This gives a symmetric pressure tensor, stored as a 6-element vector, with the components ordered by xx,yy, zz,xy,xz,yz. 
Elastic constants are related to the stress tensor by the relation Cαβ = − ∂Pα

∂eβ
, where eβ is the strain tensor and α, β stands for 1→11 = xx, 2→22 =

yy, 3→33 = zz, 4→23 = yz, 5→13 = xz, 6→12 = xy values (in Voigt notation). At zero temperature, these derivatives can be estimated by 
deforming the simulation box in one of the six directions and measuring the change in the stress tensor Pα. The first step is to minimize the system to get 
zero pressure and compute the stress tensor, P0

α. Then, the unitary cell is deformed by a small positive fraction Δα and minimized again to get the stress 
tensor after the deformation Pf

α = Pα(Δα). Then, the derivatives with respect to strain components eβ can be computed using finite differences 

C+
αβ = − ΔPα/Δeβ= − (Pf

α − P0
α)/h, (27)  

where Δeβ ≈ hli/lj = h, as the box is a square. The li are the box sizes, lx, ly, lz , and h = 10− 6 is the finite deformation size (we should try several values 
of h to verify that results do not depends on it). This procedure is repeated for a small negative fraction deformation so 

C−
αβ= (Pf

α − P0
α)/h. (28) 

Fig. 9. RDF of an ideal A2BO4 spinel. First two peaks (at distances 
̅̅̅
3

√
a/8 and a/4) are first nearest neighbors to A and B sites and the next three, have their second 

nearest neighbors distances at: 
̅̅̅
2

√
a/4,

̅̅̅̅̅̅
11

√
a/8,

̅̅̅
3

√
a/4. 

Table 10 
Fractional coordinates of ideal lattice sites in the cubic unit cell of spinel in the Wycoff notation. A-cation sites (point symmetry 43 m), B- 
cation sites (point symmetry 3 m) and X-anion sites (point symmetry 3 m).  

Origin at 43 m A-site cation, u = 3/8. Origin on inversion center 3 m, u = 1/4. 

A = [0,0, 0],
[
1
4
,
1
4
,
1
4

]

, two sites. A =

[
1
8
,
1
8
,
1
8

]

,

[
7
8
,
7
8
,
7
8

]

, two sites. 

B =

[
5
8
,
5
8
,
5
8

]

,

[
5
8
,
7
8
,
7
8

]

,

[
7
8
,
5
8
,
7
8

]

,

[
7
8
,
7
8
,
5
8

]

, four sites. B =

[
1
2
,
1
2
,
1
2

]

,

[
1
2
,
1
4
,
1
4

]

,

[
1
4
,
1
2
,
1
4

]

,

[
1
4
,
1
4
,
1
2

]

, four sites.

X = [u, u, u],
[(

1
4
− u

)

,

(
1
4
− u

)

,

(
1
4
− u

)]

, eight sites. 
X = [u, u, u], [ − u, − u, − u], eight sites. 

[u, − u, − u],
[(

1
4
+ u

)

,

(
1
4
+ u

)

,

(
1
4
− u

)]

,

[

u,
(

1
4
− u

)

,

(
1
4
− u

)]

,

[(
1
4
− u

)

, u,
(

1
4
− u

)]

,

[ − u, u, − u],
[(

1
4
+ u

)

,

(
1
4
− u

)

,

(
1
4
+ u

)]

,

[(
1
4
− u

)

,

(
1
4
− u

)

, u
]

,

[

− u,
(

3
4
+ u

)

,

(
3
4
+ u

)]

,

[ − u, − u, u],
[(

1
4
− u

)

,

(
1
4
+ u

)

,

(
1
4
+ u

)]

.

[(
3
4
+ u

)

, − u,
(

3
4
+ u

)]

,

[(
3
4
+ u

)

,

(
3
4
+ u

)

, − u
]

.
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More exactly, C±
αβ are computed after deforming the simulation box by, Δα, in the six directions, (α = 1,⋯,6) 

C±
α1 = ∓[Pα(Δx = ±hlx) − P0

α]/h
C±

α2 = ∓[Pα
(
Δy = ±hly

)
− P0

α]/h
C±

α3 = ∓[Pα(Δz = ±hlz) − P0
α]/h

C±
α4 = ∓[Pα(Δyz = ±hlz) − P0

α]/h
C±

α5 = ∓[Pα(Δxz = ±hlz) − P0
α]/h

C±
α6 = ∓[Pα(Δxy = ±hly) − P0

α]/h,

(29)  

where ( ± ) are positive or negative deformations. Next, an average is taken for each of the six components, i.e., the elastic constants are computed as, 
Cαβ= (C+

αβ + C−
αβ)/2. By symmetry it must be demanded that C’

12 = (C12 + C21)/2,C’
13 = (C13 + C31)/2 and C’

23 = (C32 + C23)/2, and finally the 
average moduli for cubic crystals is computed 

C11 =
C11 + C22 + C33

3
,

C12 =
C’

12 + C’
13 + C’

23

3
,

C44 =
C44 + C55 + C66

3
.

(30) 

Because the spinel system is a cubic crystal it must be satisfied that 

C11 = C22 = C33,

C12 = C13 = C23,

C44 = C55 = C66,

(31)  

the rest of coefficients must be zero, that is, an ideal spinel is a cubic crystal system where the elastic modulus matrix can be written as follows 

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(32) 

This method constitutes a generic manner to obtain the elastic constants for any potential. 

Appendix C. Supplementary material 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.commatsci.2022.111653. 
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