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INTRODUCTION

Protein structure prediction has had much success in
predicting the ordered alpha and beta secondary struc-
ture components as, often, sequence alone can determine
their conformation, especially with the help of previously
known homologous protein structures.1 Loop regions,
however, adopt conformations that are not as easily pre-
dicted because they lack strict arrangement rules. Predic-
tion is also complicated by the fact that these regions
often show intrinsic mobility and, therefore, are not as
well resolved by X-ray diffraction crystallography and
nuclear magnetic resonance. Over the last 10 years, con-
siderable efforts have gone into developing and refining
the prediction ability of three classes of loop-sampling
algorithms. The fastest of these are knowledge-based
methods that rely on structure databases and sequence
homology to generate conformations2–5 and sport an
accuracy as low as 2 Å for sequences length of up to 20
amino acids (a.a.).6 Ab initio methods, which build loop
fragments from scratch and sample the conformation
space in search of the lowest energy or best scoring con-
formations,7–16 are more demanding computationally
but they tend to lead to better results independent of the
loop sequence. The last class of loop-sampling algorithms

are hybrid methods that combine both algorithms for
specific sequences.17,18 Although many of the previous
methods were tested on independent datasets, a quantita-
tive comparison of these methods is presented in Table I
of Arnautova et al.19

Here, we focus on ab initio approaches. These all share
a limitation on the maximum loop size they can effec-
tively sample due to the exponential increase in confor-
mational space with loop length. Most studies, until now,
have been done on loop datasets of 13 a.a. or less. Their
cost, in terms of computational effort, tend to increase
exponentially with loop length, following the growth in
conformational space.14,19 Sampling, moreover, is made
more difficult by the constraints imposed by the fixed
loop endings and is akin to protein folding in a confined
environment, a problem which remains challenging.
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ABSTRACT

We present an adaptation of the ART-nouveau energy surface sampling method to the problem of loop structure prediction.
This method, previously used to study protein folding pathways and peptide aggregation, is well suited to the problem of
sampling the conformation space of large loops by targeting probable folding pathways instead of sampling exhaustively
that space. The number of sampled conformations needed by ART nouveau to find the global energy minimum for a loop
was found to scale linearly with the sequence length of the loop for loops between 8 and about 20 amino acids. Considering
the linear scaling dependence of the computation cost on the loop sequence length for sampling new conformations, we esti-
mate the total computational cost of sampling larger loops to scale quadratically compared to the exponential scaling of ex-
haustive search methods.
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In this work, we investigate the loop structure predic-
tion problem using the ART-nouveau20 energy landscape
sampling method, which has been used to study protein
folding pathways and peptide aggregation of systems of
up to 60 a.a.21,22 We show that the method, although
somewhat heavy for short loops of 8 and 12 a.a., can
handle large loops of 20 a.a. or more in a very competi-
tive manner, providing both extensive configurational
sampling as well as low-energy structures.

METHODS

ART-nouveau potential energy landscape
exploration method

We adapted the activation relaxation technique, ART
nouveau,20,21,23 to the exploration of the constrained
potential energy landscape of loop segments covalently
bound at both extremities to a fixed protein body. ART
nouveau is an iterative process consisting of four steps
through which the conformation of an atomic system is
moved from one local minimum on the potential energy
surface to another nearby minimum passing through an
adjacent first-order saddle point. (1) Starting from a local-
energy minimum, the conformation is first deformed in a
random direction taken in the 3N-dimensional loop space.
It is pushed along this direction until it leaves the har-
monic basin and the lowest eigenvector of the Hessian
matrix become negative. (2) The conformation is pushed
along the direction of negative curvature, whereas its
energy is minimized in the perpendicular hyperplane until
the force falls below a small threshold, indicating that the
system has converged onto a first-order saddle point. (3)
The conformation is then pushed slightly over this saddle
point and relaxed, using a damped molecular dynamics,
into a new energy minimum. (4) The move from the ini-
tial to the final minimum is then accepted or rejected
using a Metropolis criterion.24

To avoid N3 operations, the lowest eigenvalue and cor-
responding eigenvector are computed using the Lanczós
algorithm with typically less than 16 force evaluations
per step. Implementation details of this very competitive
algorithm25 can be found in Refs. 21,26.

ART nouveau has been used to characterize the energy
landscape of complex systems27 as well as generate fold-
ing trajectories,21 Here, we are interested in sampling the
landscape of large loops and identify low-energy struc-
tures. To do so, we elected to use a Metropolis algo-
rithm24 with adaptative temperature. In the original
algorithm,20,25 the acceptance probability is given by

Pa ¼ min
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where DE is the energy difference between consecutive
minima c 2 1 and c, T is the Metropolis temperature,

and kB is the Boltzmann constant. To keep the probabil-
ity Pa constant and avoid getting trapped into deep
basins, the Metropolis temperature here is adjusted on
the fly by applying a Berendsen bath28 on the acceptance
probability of conformation c:

PavgðcÞ ¼ Pavgðc " 1Þ þ
Pa " Pavgðc " 1Þ

s
; ð2Þ

where s is the coupling parameter and Pavg is average
effective acceptance rate over the previous w conforma-
tions defined as:
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The Metropolis temperature for a given Pavg(c) is
solved iteratively. For our simulations, we selected a win-
dow size w of 15 conformations and a coupling s of 20
with a target acceptance probability Pa of 50%. We also
set a minimum metropolis temperature of 300 K to pre-
vent the system from freezing in shallow basins, where
the difference in energy between neighboring conforma-
tions is small.
For ART-nouveau’s exploration, the protein is divided

into a fixed protein body and the flexible loop regions.
Atoms in the fixed region were assigned based on the
experimentally derived native conformations. This proce-
dure is similar to that used in previous studies of loop
flexibility such as Refs. 7,29,30.

Dataset

In this study, we used two previously published data-
sets for the 8 and 12 a.a. loops, respectively. The first set,
from Olson et al.,16 is a subset of a large database31 and
is composed of 25 eight-amino acid loops from 22 pro-
teins. The second set is a subset of 38 loops of length 12
a.a. from the Fiser et al.7 dataset. This later subset was
used in a number of publications, either in part or as a
whole.11,13,32–34

Initial loop structures for the ART-nouveau were gen-
erated by stretching the loop into an arc of length 3.25 Å
times the number of loop amino acids using a harmonic
potential applied onto the a.a. center of mass. Five
stretched loop conformations were generated per protein
with an angle between arc supporting planes of 308.
Between 1 and 5 initial conformations were selected for
the loop regions of size 8 a.a. and between 2 and 3 for
loops of size 12 a.a., based on the potential energy and
rejecting loops segments clashing with the protein body.
Using stretched structures as initial conformation, we
ensure that simulations are starting far away from the
global energy minimum, decreasing possible biases of the
initial state.
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For the 8 a.a. loops, the standard Metropolis criterion,
with a Metropolis temperature of 700 K, was used to
accept or reject new local minima. For the 12 a.a. loops,
we found that using the constant probability rate of
Eq. (3) yielded a wider sampling of the conformation
space and, therefore, was used for these loops.

For both loop sets, the selected conformations were
given 5–10 days of simulation time on single-core Intel
Xeon 2.8 GHz microprocessors. Simulation details are pre-
sented in Tables I and II. In addition, five batches of pre-
liminary simulations were executed to optimize the ART
parameters on the 12 a.a. loop set. Although the results of
these preliminary simulations are not included in the anal-
ysis presented in the next section, the search for a global
energy minimum was done on all generated conforma-
tions including preliminary and test simulations.

For longer loop evaluation, we constructed a dataset of
10 proteins using the PISCES server37 among all proteins
with an X-ray structure of resolution lower than 2.0 Å, a
sequence identity lower a 25% and a sequence length
between 140 and 600 a.a. Regions with no defined sec-
ondary structure elements were identified using DSSP,38

When the loop was found in a multimeric protein, the
first chain containing the loop was used and it was veri-
fied that the loops did not interact with the removed
meres. Because of the difficulty in finding long-loop
regions completely devoid of secondary structure, the 19
and 20 a.a. loops presented in Table III have up to 3 a.a.
in bend or hydrogen bounded turn conformation, with
the exception of 1ofl, which also has 2 a.a. in a-helix
conformation. Simulations were executed for 20 days on
the same machines as above.
For analysis, we use the global definition of root mean

square deviation (RMSD) in which the fixed portions of
the proteins are superimposed before calculating the
RMSD of the flexible loop region alone without further
translations or rotations of the protein. Only the back-
bone atoms of the loop are included in the RMSD calcu-
lations.

OPEP force field

We have modified the optimized potential for effi-
cient peptide-structure prediction (OPEP)39 coupled to

Table I
Simulation Details for the 8 a.a. Loops of the Olson et al. Dataset16

Protein
Nb
runs

RMSD
initial

Best
RMSD

Energy
rank
(%)

TOP
RMSD
OPEP

Nb runs
finding
energy
minimum

Average
acceptance

rate

1a62 3 3.21–5.59 0.72 96.6 2.73 3 0.40
1a62 2 4 4.31–6.76 0.15 55.0 3.18 2 0.31
1aac 3 3.42–5.06 2.01 71.8 2.89 2 0.35
1aba 4 3.75–6.67 0.36 85.1 3.05 1 0.37
1awd 2 4.02–6.06 0.11 32.0 3.94 2 0.34
1c52 3 2.68–4.44 2.65 92.1 3.75 3 0.21
1cbn 5 3.82–5.77 0.33 58.4 2.44 5 0.43
1hfc 3 2.84–6.18 0.43 97.4 2.89 3 0.33
1ig5 5 5.00–7.33 0.00 0.1 3.68 2 0.37
1lit 4 4.13–5.54 0.03 87.3 3.42 4 0.49
1msi 2 5.23–7.22 0.01 91.8 3.59 2 0.32
1nls 1 4.92 4.87 99.5 6.24 1 0.54
1nox 4 3.31–6.95 2.27 96.8 2.96 4 0.36
1opd 3 3.16–5.25 1.17 89.8 3.57 3 0.38
1plc 3 4.70–7.22 1.20 28.8 3.29 3 0.38
1plc 2 1 3.84 1.98 33.8 2.31 1 0.41
1ppn 3 2.15–5.79 0.52 32.8 1.20 3 0.29
1ppn 2 3 4.43–6.58 2.01 99.9 4.43 3 0.42
1ra9 4 3.86–5.42 2.29 70.9 4.36 1 0.32
1rat 3 3.71–5.46 2.99 89.9 4.02 1 0.26
1rro 3 3.18–7.64 0.01 57.1 4.87 3 0.23
1vwj 4 2.75–5.92 1.67 99.6 6.44 1 0.32
3nul 4 3.22–5.86 0.06 88.9 2.12 4 0.23
3seb 2 3.42–4.40 2.14 72.1 4.00 2 0.28
5pal 3 3.73–5.66 0.85 46.4 2.12 1 0.44
Average 3.2 4.71 1.23 71.0 3.50 2.4 0.35
Median 1.01 85.1 3.46
St. Dev. 1.20 28.3 1.17

All RMSD are calculated with respect to the native loop structure and are presented in Å. RMSD initial is the distance
between the initial stretched structures and the native conformation. Best RMSD corresponds to the structure of lowest
RMSD and the energy rank is the percentage of conformation that have lower energy than this structure. ‘‘TOP RMSD
OPEP’’ is the RMSD of the structure of lowest energy with the OPEP potential. The acceptance rate of a new conforma-
tion is averaged over all runs.
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ART-nouveau to allow faster sampling of loop regions.
OPEP is a coarse-grained potential for which all amino
acids side chains are represented by a unified bead
except for glycine and proline. All backbone heavy
atoms and the hydrogen atom bound to the backbone
nitrogen are also represented. To increase the efficiency
of the energy computation, all interactions involving
two atoms outside of the loop region were removed
from the force field. These fixed protein body atoms
formed a constant background potential for the docking
of the free loop atoms. The forces and energy between

the loop’s atoms and the rest of the protein are calcu-
lated as usual, but the protein’s body atoms are not
allowed to change conformation. This potential was suc-
cessfully used to study protein folding21,23,40 and pep-
tide aggregation.22,41–43 OPEP was recently compared
to the AMBER99SB and OPLS-AA all-atom force field
on two small peptides by parallel tempering metady-
namics and was found to be in agreement with the two
detailed potentials and could reproduce the features of
the free-energy landscape at a much lower computa-
tional cost.44

Table II
Simulation Details for the 12 a.a. Loops of the Fiser et al. Dataset.7

Protein
Nb
runs

RMSD
initial

Best
RMSD

Energy
rank (%)

TOP
RMSD OPEP

Nb runs
finding
energy
minimum

TOP RMSD
dFIRE

Average
acceptance

rate

154L 3 8.61–11.00 2.00 83.0 14.59 3 3.87 0.49
1ARP 3 4.93–7.71 2.40 99.0 5.77 1 5.61 0.49
1CTM 4 6.36–8.41 2.41 65.1 7.13 1 4.59 0.48
1DTS 3 5.11–7.33 2.70 85.9 5.44 1 3.68 0.50
1ECO 3 6.61–8.38 1.15 54.9 4.38 3 3.45 0.50
1EDE 3 5.73–6.65 2.35 76.3 6.32 0 3.20 0.49
1EZM 3 3.91–5.22 0.36 73.0 5.31 3 1.74 0.49
1HFC 3 8.11–9.09 3.01 66.2 11.31 3 7.90 0.50
1MSC 3 6.97–9.27 2.06 95.7 7.82 3 8.17 0.49
1ONC 4 7.20–8.43 1.51 77.1 4.80 1 3.54 0.49
1PBE 3 5.97–7.02 0.94 68.5 4.09 3 2.09 0.48
1PMY 3 4.74–5.85 2.21 71.5 4.78 0 3.43 0.48
1PRN 3 5.24–7.34 1.62 83.7 6.38 2 7.41 0.48
1RCF 3 6.24–9.59 2.22 83.0 4.09 3 4.06 0.48
1RRO 3 3.73–4.73 1.29 89.9 4.42 3 3.85 0.50
1SCS 2 5.80–10.09 0.34 49.5 3.32 2 2.9 0.49
1SRP 3 3.21–5.98 1.14 97.8 3.05 3 2.16 0.50
1TCA 2 6.20–8.42 3.04 6.9 5.11 0 5.21 0.48
1THG 2 5.70–6.41 1.73 24.4 2.58 1 2.92 0.49
1THW 2 5.76–8.14 3.63 99.9 9.61 0 9.45 0.49
1TML 3 7.98–8.70 1.18 17.2 3.85 3 2.93 0.49
1XIF 3 5.72–6.22 0.14 13.2 1.62 1 1.55 0.49
2CPL 4 7.16–9.14 2.84 72.4 6.59 1 5.34 0.49
2CYP 3 4.63–9.03 2.61 86.7 4.20 1 3.84 0.49
2EBN 3 5.68–9.97 2.52 88.1 7.98 1 4.70 0.50
2EXO 3 4.18–7.80 3.39 27.3 5.89 0 3.07 0.48
2PGD 3 5.74–7.88 1.39 95.4 7.36 1 3.09 0.48
2RN2 3 5.22–6.08 1.73 40.3 3.59 0 6.29 0.48
2SIL 3 7.59–9.10 0.00 30.9 3.61 2 1.87 0.49
2SNS 3 6.96–11.74 0.37 55.8 3.93 1 3.91 0.48
2TGI 3 6.75–7.32 1.70 76.1 3.23 3 3.17 0.50
3B5C 3 4.05–6.09 0.30 41.7 2.77 3 2.97 0.49
3CLA 3 4.53–8.99 2.84 30.2 5.46 1 5.80 0.48
3COX 3 5.04–5.67 2.02 89.8 5.61 0 4.84 0.48
3HSC 3 8.68–10.28 1.81 82.4 4.96 3 5.40 0.48
451C 2 7.41–7.65 2.92 80.2 5.93 2 6.11 0.48
4ENL 3 4.53–4.89 0.90 83.8 5.95 2 1.96 0.48
4I1B 3 7.42–8.23 0.01 75.3 10.2 2 6.25 0.49
Average 2.8 6.93 1.75 66.8 5.60 1.7 4.27 0.49
Median 1.77 75.7 5.21 3.85
St. Dev. 0.98 26.4 2.53 1.87

All RMSD are calculated with respect to the native loop structure and are presented in Å. RMSD initial is the distance between the initial stretched structures and the
native conformation. Best RMSD corresponds to the structure of lowest RMSD and the energy rank is the percentage of conformation that have lower energy than this
structure. Two scoring methods were compared to RMSD of the minimum energy conformation, first the OPEP simulation potential (TOP RMSD OPEP), then the
dFIRE scoring method35 (TOP RMSD dFIRE) after conversion of the coarse-grained model to an all-atom representation using SCWRL4.36 The acceptance rate of a
new conformation is averaged over all runs.
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RESULTS

The following analysis of the ART-nouveau method is
divided into three sections. First, we evaluate the ability
of the method and the OPEP potential to sample confor-
mation of low energy in the vicinity of the native struc-
ture providing a proper score. Then, the ability of the
method to sample the conformational space and to find
the global energy minima regardless of the native struc-
ture is presented for the short loops of 8 and 12 a.a. and
the long loops of 19 and 20 a.a. Finally, we evaluate the
scaling performance of the method as a function of loop-
length.

Conformation scoring

The ability of the OPEP potential to find low-energy
loop conformations compatible with the crystallographic
structure is presented in Tables I and II. We find that for
the 8 a.a. dataset, our results show a comparable accuracy
to low-energy structures to that of Olson et al.16. More
precisely, the lowest energy conformations for our simu-
lations are, on average, 3.50 Å (St. Dev. 1.17 Å) away
from the native structure, as compared with 3.89 Å for
their lattice-based work and 3.14 Å for their all-atom
MD simulations.16

Even though the trajectories sample conformations
within 1.75 Å of the native state for the longer 12 a.a
loops, the lowest energy structures show an average
RMSD with respect to the native structure of 5.60 Å (St.
Dev. 2.53 Å). This discrepancy is due to the coarse-
grained nature of the OPEP potential, which does not

discriminate sufficiently between various steric packing,
as well as to the rigid spatial representation of the non-
loop protein regions which prevents structures from
adopting the optimal conformations.
To test the impact of these two limitations, we induce

flexibility by reconstructing the coarse-grained side-
chains of the whole proteins using the SCWRL4 auto-
mated tool,36 then rescored the all-atom representations
using dFIRE.35 This analysis show that lower RMSD
low-energy structures were sampled with ART nouveau
but improperly scored by the modified OPEP potential.
The resulting average RMSD of the best scored confor-
mations to the native structure is improved to 4.27 Å
(St. Dev. 1.87 Å), essentially identical to the average 4.32
Å obtained by Zhang et al. with a similar protocol45 and
slightly higher than other ab initio methods including
FALCm4 that scores using dFIRE potential with 3.84 Å
RMSD34 and LOOPER with 4.08 Å RMSD,32 Methods
making use of predefined structures, such as ROSETTA
do, of course, better: 3.62 Å RMSD for ROSETTA13

and 2.3 Å RMSD for ROSETTA with a kinetic closure
algorithm.33

The efficiency of the reconstruction and rescoring of
the ART nouveau-generated datasets suggests that even
though OPEP could not fully discriminate between the
various energy minima on the energy landscape, ART-
nouveau samples the configurational space rather effi-
ciently. This is confirmed by the fact that the smallest
RMSD between trajectories and the experimentally
derived native structure is only, on average, 1.23 and 1.75
Å, for the 8 a.a. (Table I) and 12 a.a. loops (Table II),
respectively.

Table III
Simulation Details for the 19–20 a.a. Loops Dataset

Protein
Loop
length Loop

Secondary
structure

a.a.
RMSD
initial

Nb runs

Nb runs
finding
energy
minimum

Best
RMSD

Energy
rank (%)

TOP
RMSD
OPEP

Avg %
accepted

conformations

SS LS SS LL SS LL

1gwe 20 G406-D425 2 6.58–13.58 5 10 1 0 4.11 94.5 8.39 0.52 0.38
1ofl 20 Y434-N453 4 11.41–18.86 5 10 0 1 9.45 97.3 12.53 0.53 0.39
1q6z 20 V329-Q348 2 2.75–10.33 5 10 1 0 1.69 97.0 9.30 0.58 0.38
2ess 20 C139-P158 2 5.35–9.85 5 10 1 0 3.80 89.5 7.13 0.54 0.39
2gag 20 F445-P464 0 5.20–21.96 5 10 1 0 2.17 29.0 10.32 0.60 0.37
2i9i 20 H59-H78 0 2.20–12.69 5 10 2 0 0.83 2.8 1.10 0.56 0.41
2vk8 20 G343-S362 3 3.41–8.31 5 10 1 0 1.85 78.4 5.40 0.59 0.39
3cx5 20 N227-G246 3 3.93–8.96 5 10 1 0 1.80 84.0 6.98 0.57 0.39
3d3y 19 L218-I236 2 3.19–7.52 4 10 1 0 1.62 72.4 2.89 0.52 0.39
3igx 20 E261-I280 2 3.29–12.25 5 10 1 0 1.93 90.9 7.73 0.58 0.40
Average 8.26 2.98 73.6 7.18 0.56 0.39
Median 1.89 86.8 7.43
St. Dev. 2.37 32.0 3.21

Secondary structure a.a. is the number of a.a. in turn and bend conformation and, in the case of 1ofl, in a-helical conformation as annotated by DSSP.36 RMSD initial
is the distance between the initial stretched structures and the native conformation. SS and LS refer to the short step and long step parameterization, respectively. Best
RMSD corresponds to the structure of lowest RMSD and the energy rank is the percentage of conformation that have lower energy than this structure. ‘‘TOP RMSD
OPEP’’ is the RMSD of the structure of lowest energy with the OPEP potential. The acceptance rate of a new conformation is averaged over the number of runs.
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We observe similar results for the dataset composed of
loops of 19 and 20 a.a, the RMSD of the conformations
of lowest energy to the native conformations averages to
7.17 Å (St. Dev. 3.21 Å) (Table III), which is comparable
to, or better than previously published results on loops
of the same size, that is, &7 Å for CABS, &9 Å for
Rosetta, and &12 Å for MODELLER on the Jamroz and
Kolinski dataset,46 and 10.49 Å for MODELLER, 10.64 Å
for RAPPER, 11.14 Å for PLOP, and 7.64 Å for Original
FREAD on the Choi and Deane dataset.6 However, the
lowest RMSD to the native structure observed in these
20 a.a. loop studies is of 2.98 Å (St. Dev. 2.37 Å), consis-
tently lower then the lowest RMSD for the above studies,
a value that ranges between &4–5 Å46 and 5.20–8.43 Å
average RMSD.6 This suggests that our prediction preci-
sion for large loops is competitive with previously pub-
lished methods and that the ART method can sample
conformations closer to the native structure even when
this structure is not the global energy minimum of the
used potential.

The focus of this project is to evaluate the ability of the
ART method to sample a wide range of loop structures
and identify low-energy conformations on a potential
energy surface. We, therefore, leave aside the issue of
proper scoring and prediction capacities, which are entirely
dependent on the chosen energy potential, to analyze sam-
pling capacities of ART-nouveau which is potential-
independent. In the following analysis, RMSD values are
calculated with respect to the global low energy conforma-
tions of the energy potential instead of the native confor-
mation. For this purpose, the low computational cost of
the OPEP potential is well suited as it allows for longer
simulation times and wider sampling of the conforma-
tional space to identify the global low energy structures.

Exploration of the conformation space for
the 8 a.a. and 12 a.a. loop dataset

ART-nouveau’s sampling ability can be evaluated by
characterizing the volume of the conformation space
sampled by the method and its ability to find the confor-
mations of global lowest energy on the OPEP potential
energy surface. In particular, proper care must be taken
to insure that conformations are not trapped in local
energy minima, away from the native state.

For the 8 a.a. loops, we see that in the 23 loops for
which more than one simulation was executed, it was
possible to recover he same lowest energy minimum, as
defined with OPEP, at least two times or more in 18 of
them (Table I), suggesting that the exploration of the
conformational space is sufficiently thorough to reach
regularly the global-energy minimum. For the 12 a.a.
loops, analysis of our preliminary simulations shows that
in six cases, conformations of lowest energy were also
sampled in the preliminary simulation, but not in the
production simulations. The lowest energy conformations

of these six preliminary simulations were used for further
analysis. When considering all calibration and production
runs, the global energy minimum was found two times
or more for 31 of the 38 loops, 19 of which were found
twice or more in the production runs of Table II.
To understand how sampling occurs, we plot the evolu-

tion of the RMSD, averaged over three different subsets
as a function of event number for both sets of loops in
Figure 1. The black curve shows the averaged RMSD of
the current ART event conformation, computed with
respect to its respective global energy configuration. We see
that this measure reaches a plateau after roughly 500 steps
and remains around 2.4 Å for the 8 a.a. loops and 4.4 Å
for the 12 a.a. loops. These distances are relatively near the
maximum deformation distance achieved by stretching the
loop, 4.63 and 7.49 Å, respectively, which indicates that
each trajectory samples widely the energy landscape.
The red curve shows the evolution of the RMSD of

the lowest energy conformation identified, or TOP
RMSD, for each trajectory launched and averaged over
all simulations. This quantity shows how a group of tra-
jectory can be used to identify the lowest energy basin.
When simulations are examined individually, we first see
that not all runs for a given loop sequence sample the
lowest energy conformation but that, overall, the proba-
bility of passing nearby this conformation increases with
the number of steps, albeit at a constantly slower pace.
After 4000 and 3000 steps, respectively, the 8 a.a. and 12
a.a. loop simulation sets reach an average per simulation
RMSD value of 1.05 Å and 2.05 Å.

Figure 1
RMSD evolution for the (a) 8 a.a. and (b) 12 a.a. loops. In black, the
current conformation’s RMSD of each simulation is calculated to the
global energy minimum conformation of the sampled protein. The
average TOP RMSD is calculated between the global energy minimum
of a system and the lowest energy conformation found so far per
simulation (red) or per protein (green). Curves are presented from top
to bottom in the same order as in the legend. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]
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It is useful to follow convergence of the full set of sim-
ulations. In the same figure, we combine all runs for
each loop and plot the overall average TOP RMSD for
each sequence (green curve). As expected, we see a faster
convergence in the first ART steps, leading to an average
RMSD to the global energy structure of 0.1 Å after 3700–
4000 conformations for the 8 a.a. loops and 1.25 Å after
1600 conformations, and 0.84 Å after 3000 conforma-
tions, for the 12 a.a. loops.

For the 12 a.a. loops, we see a lowest average RMSD
of 1.0 Å because not all sequences manage to find their
global energy-minimum structure in the production runs
here presented. In some cases, these structures were only
identified in the preliminary simulations.

Although not all runs for one protein converge to the
global energy minimum, all individual runs do overlap,
suggesting that longer runs would allow all trajectories to
find the global energy minimum. To see this, conforma-
tions were divided into clusters of maximum RMSD of
0.6 Å between each member using a hierarchical cluster-
ing algorithm and an average linkage clustering criteria.47

The center of each cluster for a given simulation was
compared with that of all other runs for the same loop
and a new clustering is performed on this dataset. Figure
2 presents the average number of clusters with a maxi-
mum RMSD of 1.0 Å that are sampled in at least two
runs for the three datasets studied here. For 8 a.a and 12
a.a. loops, we observe a linear increase as a function of
increasing number of visited conformations, which indi-
cates that, on average, trajectories continue to sample the
configurational space without being trapped as simula-
tions progress.

The size of the sampled conformational space can also
be estimated by measuring the number of clusters within
a fixed minimum RMSD between each other. The evolu-
tion of this RMSD rank is presented in Figure 3 for the
8 a.a. and 12 a.a. loops. In both cases, we see a rapid
increase in the number of clusters meeting the minimum
RMSD cutoff for the 400 first conformations sampled
followed by a slower linear stage to persists until the end
of the runs.
Two different behaviors can be identified depending

on the size of the RMSD cutoff. With higher minimum
RMSD cutoffs, we measure the diameter of the hypervo-
lume accessible to the loops. The rapid convergence of
this quantity indicates that the initial configurations are
chosen properly as they rapidly bring the various simula-
tions in very different parts of configurational space.
With a minimum RMSD of 2 or 3 Å, the average

number of clusters with minimum RMSD between each
other gives us a sense of the finer sampling the configu-
rational space. The continuous growth of the curves even
after 300–5000 steps indicates that the various trajectories
are still sampling the conformational space at a finer
level.

Exploration of the conformation space for
novel 19–20 a.a. loop dataset

The 19–20 a.a. loop dataset was constructed to test the
efficiency and scaling of our method on larger model
loops. As described below, because of the increase in con-
figurational space, the parameters used in ART nouveau
for sampling smaller loops is not optimal for this dataset.
Therefore, two different parameterizations are used on
the 19–20 a.a. loops. The first one, dubbed ‘‘short step,’’
produces conformations with an average interminimum
RMSD of about 0.5 Å. It is the set used in our study of
both 8 a.a. and 12 a.a. loop datasets. The second one,
which we call ‘‘long step,’’ generates conformations with
an average of 1.1 Å RMSD displacement between adja-
cent minima. To obtain this increased travel distance
between minima, we modified two parameters in the
ART method. The first one is the number of iteration of
the Lanczos routine used to find the eigenvector of low-
est eigenvalue of the Hessian matrix.26 By reducing from
12 to 4 iterations, the weight of the previous eigenvector,
which is used as the seed direction in Lanczos, is more
important, stabilizing the trajectory and reducing the
impact of local fluctuations in Hessian curvature. The
second modified parameter is the force threshold used in
relaxing the forces in the perpendicular hyperplane to the
activation relaxation. By increasing this threshold from
1.9 to 2.5 kcal/(mol Å), the probability of loosing a nega-
tive eigenvalue is further reduced. These modifications
decrease the reliability of the saddle point and the physi-
cal basis for the initial minimum—saddle—final mini-
mum pathway. However, here we are interested in

Figure 2
Average number of clusters common between two simulations run for
each protein defined by a RMSD distance of less than 1.0 Å between
clusters central conformation. Inset is for short-steps and long-steps
parameterization of the 19–20 a.a. loops simulations. As the probability
of two simulations overlapping is proportional to the square of the
number of simulations, the plots are normalized by the number of pairs
of simulations per protein.
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moving through the landscape and mostly making sure
that the visited minima are acceptable thermodynami-
cally. Although fairly aggressive, this set of parameters
allows us to keep a reasonable acceptance rate.

The details of both simulation sets are presented in
Table III. Comparing the average potential energy of the
sampled minima for the two different parameterization
sets, we see that the use of short steps leads to an average
potential energy &7 kcal/mol lower and a continued con-
vergence toward low energy structures compared to the
long steps (data not shown). Nine of the 10 sequence-de-
pendent global energy minima were found in the short
step simulations.

We first characterize the sampling of the configura-
tional space for the 19–20 a.a. loops by following the
evolution of the conformation RMSD as a function of
the number of generated conformations. As with the
loops of 8 and 12 a.a., we observe that the average
RMSD, measured from the native state, remains very
high at 6.3 Å, close to the value of the initial conforma-
tion, 8 Å [Fig. 4(a) black].

However, the reduction of the average RMSD of the
lowest energy conformation found so far in each run to
the global minimum is much slower than with the
smaller loops, reaching 5.0 Å in the first 5000 steps. This
can be explained by the fact that out of 10 loop models,
only the trajectories of protein 2i9i sampled the global
minimum more then once (see Table III). The larger
conformation space of the longer proteins means that
there is a smaller probability that two independent trajec-
tories overlap, finding the same folding energy funnel to
the global minima. Indeed, the simulation runs that do

find the global energy minima evolve at rate roughly two
times slower than the 12 a.a. loops. Not surprisingly,
the number of clusters shared between runs of the same
19–20 a.a. loop also grows at a slower rate that for
shorter sequences. (Fig. 2).

Figure 4
RMSD evolution for the 19–20 a.a. loops using (a) short steps and (b)
long steps parameterization. In black, the current conformation’s RMSD
of each simulation is calculated to the global energy minimum
conformation of the sampled protein. The average TOP RMSD is
calculated between the global energy minimum of a system and the
lowest energy conformation found so far per simulation (red) or per
protein (green). Curves are presented from top to bottom in the same
order as in the legend. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

Figure 5
Size of the largest group of clusters per simulation with minimum
RMSD between each member of the group greater than 2 Å (black) to
7 Å (brown). Curves are presented from top to bottom in the same
order as in the legend. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

Figure 3
Size of the largest group of clusters per simulation for the (a) 8 a.a. and
(b) 12 a.a. loops with minimum RMSD between each member of the
group greater then 2 Å (black) to 7 Å (brown). Curves are presented from
top to bottom in the same order as in the legend. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]
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The evolution of the cluster rank metric for the short
step simulations presented in Figure 5(a) also points to
difficulties in sampling the conformation space in each
simulation run using the short step parameterization.
With a larger conformation space and the possibility of
larger RMSD between two loop conformations, the clus-
ter rank metric or the 19–20 a.a. loops should increase at
a higher rate than the 12 a.a. loops. However, the shorter
average interminimum RMSD for the short step simula-
tions (0.52 Å) compared to the 12 a.a. loops simulations
(0.72 Å) may explain the lower cluster rank observed.

As mentioned earlier, to correct for the limited sam-
pling of the short-step ART nouveau 19–20 a.a simula-
tions, we also launched a number of runs with longer
ART nouveau step. These newly generated trajectories
sample saddle points of higher energy, and yet, sampling
speed is greatly enhanced. Indeed, with the new parame-
ters, we see that the number of clusters with minimum
RMSD of 2 Å increases four times more rapidly in the
first 1000 events [black in Fig. 5 (b)] as compared to the
short steps simulations [Fig. 5 (a)]. Moreover, the rate of
increase does not slow down after the first 1000 events.
On the other side, the median lowest RMSD structure to
the global minimum is found at a distance of 1.92 Å (av-
erage 2.44 Å) compared to 3.71 Å (average 4.14 Å) for
the short steps simulations even though the long step
simulations are much less likely to find the global energy
minimum of the various loops. This means that the long
steps parameterization is better suited for wide sampling
of the energy surface, whereas the small steps parameter-
ization are better for in-depth sampling and structure
refinement. This is also demonstrated by the speed at
which the long step simulations will find a low energy
minimum of low RMSD [green line in Fig. 4 (b)] com-
pared to previous parameterization [Fig. 4 (a)].

Scaling

ART manages to avoid the exponential increase in
complexity of the conformational space as a function of
the number of amino acids by not attempting to sample

the whole configurational space but rather sampling low-
energy structures only through the generation of con-
nected physical trajectories (at least, when using small
steps). The time needed for the ART method to pass
from one local minimum to neighboring minimum is
proportional to the number of integration steps required
to generate a new conformation, that is, activate to a
nearby saddle point and relax into a new minimum. The
cost of each of these step is, of course, dependant on
computational efforts required by the force field. The
modifications to the OPEP potential treating the pro-
tein’s body as a background potential lead to a theoretical
scaling of the force field computation time that is linear
with the size of the loop (n) and the size of the protein
(N), leading to an order of O(n 3 N). Experimental scal-
ing results are presented in Table IV, where we see that,
as expected, force field evaluation times scale linearly
with the protein’s size with an average correlation coeffi-
cient of 0.98 ' 0.01 and scales linearly between loop size
8 a.a. and 12 a.a and sublinearly between loops of 12 a.a.
and 20 a.a (which can be explained by the presence of
cutoffs for some parts of the potential). The average
number of force field evaluation per even is not influ-
enced greatly by the size of the loop with an average of
30,000 ' 2000 evaluations [see Table IV and Ref. 25],
and the total empirical scaling factor for the sampling of
a new conformation is linear with the loop size.
Scaling is also measured by the number of sampled

conformations needed to reach a given conformation of
interest as a function of loop length. In both cases pre-
sented in Figure 1(a,b), the RMSD measured with
respected to the global energy minimum shows a fast col-
lapse within the first 1500 sampled events, followed by a
slow optimization. For the 19–20 a.a. loops, this collapse
is evident in the 3000 first conformations sampled. What

Table IV
Scaling Parameters of the Sampling of One New Conformation
Through ART-nouveau Method

Loop
size

Protein
size scaling
factor (ls)

Protein size
scaling correl.

Nb. force. per new
conformation

8 a.a. 4.76 0.97 27,123
12 a.a. 7.38 0.98 31,572
20 a.a. 8.59 0.98 31,596 (ss) 28,030 (ls)

The protein size scaling factor represents the slope of the time needed for one
force field evaluation in relation to the protein’s size for three loop size obtained
through linear regression. Also presented is the scaling factor correlation coeffi-
cient and the average total number of force field evaluations needed to sample
one new local minimum. Abbreviations ‘‘ss’’ and ‘‘ls’’ refer to the short step and
long step parameterization of the 19–20 a.a. loop simulations.

Figure 6
Distribution of the RMSD to the global energy minimum structures for
(a) small and (b) large loops for structures of potential energy 5 kcal/
mol or less over the global minimum. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]
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differs is the minimum RMSD to which the sampling
converges after the initial fast collapse. As shown in
Figure 7, after 500 sampled conformation, 29 of the 79 8
a.a. loop simulations have visited the energy global mini-
mum for their respective sequence (36.7%) with 27 of
the 108 12 a.a. loop simulations doing the same (25%).
After 1500 conformations have been sampled, these ratio
are 54.4 and 40.7%, respectively. Therefore, to maintain
the same probability, that is, requiring that at least one
simulation per protein finds its global minimum confor-
mation in 1500 sampled conformations, we need 34–47%
more generated conformations per 12 a.a. loop then per
8 a.a. loop, which is in line with the 50% increase in
loop length. Combining this linear increase in the num-
ber of conformations needed to the previous linear
increase in simulation time required to generate a con-
formation, we estimate the total computational efforts
are quadratic with loop length.

DISCUSSION AND CONCLUSION

Small-loop structure prediction methods have seen sig-
nificant improvements in terms of required efforts and
achieved precision in the last decade. Loop predictions at
the level of 1.25 Å RMSD are now available for 12 _a. a
loops using methods that scale exponentially with system
size.48 Recent advances even boast lower than 1 Å
RMSD precision on loops of up to 12 a.a.33 or as low as
2 Å for loops of up to 20 a.a. that are identifiable by
sequence homology and other similarity criterions.6

In this article, we have shown that the ART nouveau
method can be used to sample efficiently the conforma-

tion space of loops of 20 a.a. or more. In particular,
ART nouveau is very competitive as compared with pre-
viously published methods on these large loops,6,46

demonstrating an efficient sampling of a wide range of
conformations and is also able to sample conformations
of lower RMSD to the native structure. This advantage
is likely due to the fact that events represent a physical
trajectory with local minima connected through a com-
mon saddle point. Given that the conformation space
increases exponentially with the loop length, large ran-
dom moves are very likely to end up in unphysical parts
of this space, something that is avoided with ART nou-
veau even with the relatively long steps used on the
long loops. The trajectory we generate during the event,
which attempts to follow a direction of negative curva-
ture with all other 3N-1 directions near their minimum,
ensures that.
By extensively sampling low-energy structures, ART

nouveau can also provide useful information beyond the
best score. Although the proteins that were chosen for
this study have well-defined structures, it is interesting to
note that our simulations sampled conformations of low
energy and high RMSD to the global energy minimum
for both the small and large loops as displayed in Figure
6(a, b), respectively. For the 8 a.a. loops, multiple confor-
mations with RMSD up to 6 Å to the global energy min-
imum structures were found within less then 1 kcal/mol
above the global energy minimum. For the 12 a.a. and
19–20 a.a. loops, this value reaches 7 and 9 Å, respec-
tively, on a few occasions. On more flexible loop targets,
these distant conformations may well be populated at the
equilibrium, playing biological role for these structures.
As ART-nouveau is a method that can be used with

any underlying energy potential, its ability to find global
energy minimum would not be altered using a more
faithful protein representation in which the global min-
ima corresponds to the native structures. From the col-
lected data on loops of size 8–20 a.a., we estimate the
computational time requirements to scale roughly quad-
ratically with the sequence length of the simulated loop.
The current adaptation of the ART-nouveau method is

a promising tool to tackle the problem of long loop sam-
pling. All the metrics presented show that the first 1500
sampled conformations are the most rewarding in their
ability to minimize the RMSD to the global minimum
and that it is preferable to launch multiple short simula-
tion runs than a few long ones. Results from a few test
cases with the 19–20 a.a. loops demonstrate that, by
alternating large and smaller moves, ART nouveau can
avoid being trapped into the numerous basins associated
with the longer loops complex energy landscape, sam-
pling the configurational space efficiently at rough and
fine levels, leading to the identification of a number of
competing states, slightly above the minimum-energy
conformation, that could plan an important biological
role.

Figure 7
Proportion of the number of simulation that have found their protein’s
global minimum loop structured as a function of the number of
accepted conformations based on a 0.1 Å RMSD cutoff to the global
minimum. Curves are presented from top to bottom in the same order
as in the legend. [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]
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