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The evolution of many systems is dominated by rare activated events that occur on timescale ranging from nanoseconds to the
hour or more. For such systems, simulations must leave aside the full thermal description to focus specifically on mechanisms that
generate a configurational change. We present here the activation relaxation technique (ART), an open-ended saddle point search
algorithm, and a series of recent improvements to ART nouveau and kinetic ART, an ART-based on-the-fly off-lattice self-learning
kinetic Monte Carlo method.

1. Introduction

There has been considerable interest, in the last two decades,
in the development of accelerated numerical methods for
sampling the energy landscape of complex materials. The
goal is to understand the long-time kinetics of chemical reac-
tions, self-assembly, defect diffusion, and so forth associated
with high-dimensional systems counting many tens to many
thousands of atoms.

Some of these methods are extension of molecular
dynamics (MD), such as Voter’s hyperdynamics [1, 2],
which provides an accelerated scheme that incorporates
directly thermal effects, Laio and Parrinello’s metadynamics
[3], an ill-named but successful algorithm that focuses on
computing free-energy barriers for specific mechanisms,
and basin-hopping by Wales and Doye [4] and Goedecker
[5]. Most approaches, however, select to follow transition
state theory and treat the thermal contributions in a quasi-
harmonic fashion, focusing therefore on the search for
transition states and the computation of energy barriers. A

number of these methods require the knowledge of both
the initial and final states. This is the case, for example, for
the nudged-elastic band method [6] and the growing-string
method [7]. In complex systems, such approaches are of very
limited application to explore the energy landscapes, as by
definition few states are known. In these situations, open-
ended methods, which more or less follow the prescription
first proposed by Cerjan and Miller [8] and Simons et al. [9,
10] for low-dimensional systems, are preferred. Examples are
the activation-relaxation technique (ART nouveau) [11–13],
which is presented here, but also the eigenvector-following
method [14], a hybrid version [15], and the similar dimer
method [16].

Once a method is available for finding saddle points
and adjacent minima, we must decide what to do with this
information. A simple approach is to sample these minima
and saddle points and classify the type of events that can take
place, providing basic information on the possible evolution
of these systems. This approach has been applied, using ART
nouveau or other open-ended methods, on a number of
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materials ranging from Lennard-Jones clusters to amorphous
silicon and proteins [11, 13, 17–30]. A more structured anal-
ysis of the same information, the disconnectivity tree [31],
popularized by Wales and collaborators, allows one to also
extract some large-scale structure for the energy landscape
and classify the overall kinetics of particular systems based
on the generated events [32–36]. These open-ended methods
can also be coupled with various accept/reject schemes, such
as the Metropolis algorithm, for finding energy minima of
clusters and molecules such as proteins and bulk systems
[11, 20, 37, 38].

In the long run however, most researchers are interested
in understanding the underlying kinetics controlling these
complex systems. To this end, it is no longer sufficient
to collect these saddle points: they must be ordered and
connected in some fashion to reconstruct at least a reduced
representation of the energy landscape. Wales and collab-
orators used a different approach: starting from a large
catalog of events, they construct a connectivity matrix that
links together minima through saddle points, and they
apply a master equation to solve the kinetics [39]. While
the discrete path sampling method has the advantage of
providing a complete solution to the system’s kinetics,
the matrix increases rapidly with the system’s complexity,
making it difficult to address the kinetics of large and
complex problems. It has nevertheless been applied with
success to describe protein folding of a number of sequences
[40–42].

A more straightforward approach to generate kinetics
with these methods is to apply an on-the-fly kinetic Monte
Carlo procedure: in a given local minimum, a finite number
of open-ended event searches are launched and the resulting
barriers are used to estimate a probable timescale over which
an event will take place. This approach was applied to a
number of systems using various open-ended methods such
as the dimer [43–45], the hybrid eigenvector-following [46],
and the autonomous basin climbing methods [47]. These
approaches are formally correct, if an extensive sampling
of activated events is performed before each kinetic Monte
Carlo (KMC) step. They are wasteful, however, as unaffected
events are not recycled, increasing rapidly in cost as the
number of possible moves increases. This is why there
have been considerable efforts in the last few years to
implement cataloging for these events, which most of the
time involve off-lattice positions. The kinetic activation-
relaxation technique (kinetic ART), introduced a few years
ago, proposes to handle these off-lattice positions through
the use of a topological catalog, which allows a discretization
of events even for disordered systems while ensuring that
all relevant barriers are relaxed in order to incorporate fully
long-range elastic deformations at each step [48, 49]. The
need for such a method is very strong, as is confirmed by the
multiplications of other algorithms that also address various
limitations of standard KMC published recently, including
the self-learning KMC [50], the self-evolving atomistic KMC
[51], and the local-environment KMC [52].

While we are fully aware of other similar algorithms,
we focus in this paper on the methods developed by our
group: ART nouveau and kinetic ART. First, we present

the most recent implementation of ART nouveau, which
has been extensively optimized and is now faster than most
comparable methods [30], and two applications: to iron and
to protein folding. In the second section, we discuss kinetic
ART, which, at least formally, is the most flexible atomistic
KMC algorithm currently available, and show how it can be
applied to complex materials including amorphous systems.

2. ART Nouveau

The ART nouveau method is an open-ended algorithm for
first-order saddle point search. This algorithm has been
developed over the last 15 years. Based on the activation-
relaxation technique proposed in 1996 [11], it incorporates
an exact search for a first-order saddle point in line with
the eigenvector-following and the dimer method, through
the use of the Lanczos algorithm [13]. This method has
been tested and characterized in a recent paper by Marinica
and collaborators [29] and updated by Machado-Charry and
collaborators [30], decreasing significantly its numerical cost.

ART nouveau proceeds in three steps.

(1) Leaving the Harmonic Well. Starting from a local-
energy minimum, the configuration is deformed in
order to identify a direction of negative curvature on
the energy landscape indicative of the presence of a
nearby first-order saddle point.

(2) Convergence to a First-Order Saddle Point. Once a
direction of negative curvature is identified, the
system is pushed along this direction and away from
the initial minimum, while minimizing the energy
in the 3N − 1 perpendicular hyperplane. When
successful, this step ensures that the point reached is
indeed a first-order saddle point.

(3) Relaxation into a New Minimum. By definition, a
first-order saddle point connects two local minima by
a minimum-energy path. To find the new minimum,
we push the configuration over the transition state
and relax the total energy.

These three steps form an event, a set of three related
configurations: the initial minimum, the transition state, and
the final minimum. As described here in after, the event can
be used to characterize the local energy landscape, within a
Metropolis scheme or to generate a kinetic trajectory using
a kinetic Monte Carlo approach, as all points generated are
fully connected.

After providing this short overview, it is useful to describe
with some details the three basic steps defining ART nouveau.

2.1. Leaving the Harmonic Well. The selection of a direction
for leaving the harmonic well is crucial for finding rapidly
a characteristic distribution of saddle points surrounding
the initial minimum. This harmonic well is described as the
region of the energy landscape surrounding a local minimum
with only positive curvature.
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Figure 1: Sketch of minimum-energy (steepest descent) pathways
from various first-order saddle points to the local energy minimum
(Em). The harmonic basin is the region within the oval surrounding
the energy minimum. Except for geometric constraints, all pathways
enter the harmonic basin following the lowest mode of vibration.

It is, therefore, tempting to use the eigenvectors of the
Hessian matrix, corresponding to the second derivative of the
energy:

Hij = ∂2E

∂xi∂xj
, (1)

where i, j = {1, . . . , 3N}, computed at the local minimum as
a reasonable orthogonal set of sampling directions. However,
this matrix does not contain any information regarding
the position of nearby saddle points as the steepest-descent
pathway towards this basin from each of these transition
states (except for symmetric constraints) becomes rapidly
parallel to one of the two directions of lowest, but positive,
curvature as it moves into the harmonic basin (Figure 1).

In the absence of a discriminating basis in the selec-
tion of a given direction for launching the saddle-point
search, it is best to simply use randomly chosen directions
of deformation. While global random deformations are
appropriate, numerous tests have shown that these lead
to an oversampling of the most favorable events, generally
associated with low-energy barriers, making the sampling of
the energy landscape relatively costly [12, 29]. The approach
chosen in ART nouveau is therefore to deform randomly
select regions of the configuration, allowing nevertheless the
full system to react to this deformation, in order to limit
the building of strain. With this scheme, the activation can
also be focused on particular subsets of a system, when
needed. For example, if we are interested in the diffusion
of a few defects in a crystal, it is appropriate to select, with
a heavy preference, atoms near these defects for the initial
deformation. Events found with both approaches are the
same, but sampling is significantly more efficient with the
localized procedure [29].

More precisely, the procedure implemented in ART
nouveau for leaving the harmonic well is the following:

(1) an atom is first selected at random from a predefined
set of regions, that can include the whole system but
can be limited to, for example, the surface of a slab or
a region containing defects;

(2) this atom and its neighbors, identified using a cut-
off distance that can be limited to the first-shell
neighbors or run through many layers, are then
moved iteratively along a random direction;

(3) at every step, a slight minimisation in the perpen-
dicular hyperplane is applied to avoid collisions and
allow the full system to react to this deformation;
this minimisation is not complete, as this would
bring back the system onto the direction of lowest
curvature of the harmonic well, and it is selected to
be just sufficient to avoid unphysical conformations;

(4) at every step, we use a Lanczos procedure [54] to
evaluate the lowest eigenvalue of the Hessian matrix;
when this eigenvalue falls below a certain negative
threshold, the system is considered to have left the
harmonic well and we move to the activation regime.
The negative threshold is selected to ensure that
the negative eigenvalue does not vanish after a few
minimisation steps in the activation regime and
depends on the details of the forcefield.

2.2. Converging to a First-Order Saddle Point. Once a direc-
tion of negative curvature has been identified, it is relatively
straightforward to bring the system at a first-order saddle
point: the system has to be pushed along this direction while
the energy is minimised in the perpendicular hyperplane.
This ensures that the system will reach a first-order transition
state as the force vanishes.

While straightforward, the activation can be very costly
as it requires a partial knowledge of the Hessian matrix.
If, for a system counting a few atoms, it is appropri-
ate to simply compute and diagonalize the Hessian, this
approach is not feasible with larger problems. To avoid this
expensive calculation, a number of algorithms have been
proposed for this search, including approximate projections
[11], eigenvector-following [14], and hybrid eigenvector-
following methods [15] such as the dimer scheme [16].
Since only the lowest direction of curvature is required, the
Lanczos algorithm [54] has the advantage of building on the
previous results to identify the next lowest eigendirection,
decreasing considerably the computational cost of following
a direction of negative curvature to a transition state.

Irrespective of system size, we find that a 15 × 15 Lanczos
matrix is sufficient to ensure a stable activation. Since
building this matrix requires forces differences, this means
that 16 force evaluations, in a second-order approximation,
are necessary when counting the reference position. It is
possible to decrease the matrix size to as little as 4 ×
4 [30]. In this case, the stability of Lanczos’ solution is
ascertained at each step by comparing the newly found
direction of lowest curvature with the previous step. If the
cosine between the two vectors is less than a set criterion,
the Lanzcos procedure is repeated until full convergence of
the eigenvector. Depending on the system, this approach can
half the average number of force evaluations needed for this
procedure [30].

Near the saddle point, the dual approach of activation
with Lanczos and minimization in the perpendicular hyper-
plane with a different algorithm is not optimal. At this point,
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we find it often preferable to use an integrated algorithm that
can converge efficiently on inflection points. As described in
[30], we have implemented recently the direct-inversion in
iterative-subspace (DIIS) method [55, 56] into ART nouveau
to accelerate and improve convergence. Interestingly, we have
found in recent work that DIIS cannot be applied when
the landscape is too rough, such as at a Si(100) surface
described with an ab initio method, and other approaches
are preferable [57]. For the appropriate systems, however,
DIIS can significantly decrease the computational costs of the
activation phase.

In summary, the activation and convergence to a first-
order saddle point phase can be described with the following
steps:

(1) using the Lanczos algorithm, the direction of negative
curvature is obtained;

(2) the system is pushed slightly along this direction, with
a displacement decreasing as a square root of the
number of iterations, to facilitate convergence onto
the saddle point;

(3) the energy is relaxed in the perpendicular hyperplane;
in the first iterations after leaving the harmonic well,
only a few minimization steps are taken, to avoid
going back into the harmonic well and losing the
direction of negative curvature;

(4) if DIIS is not used, the first three steps are repeated
until the total force falls below a predefined thresh-
old, indicating that a first-order saddle point has
been reached or until the lowest eigenvalue becomes
positive, indicating that the system has found its way
back into the harmonic well;

(5) if DIIS is applied near the transition state, we apply
the Lanczos algorithm until the negative eigenvalue
has reached a minimum and has gone up for 4
sequential iterations (this criterion and the DIIS
implementation are discussed in [30]); DIIS is then
launched and applied until the convergence criterion
is reached; a final Lanczos calculation is then per-
formed to ensure that the point is indeed a first-order
saddle point.

2.3. Relaxation into a New Minimum. Once the configura-
tion has reached a saddle point, it is necessary to nudge
slightly over to allow it to converge into a new minimum.
There is clearly some flexibility here. In ART nouveau,
the configuration is generally pushed over a distance of
0.15 times the distance between the saddle and the initial
minimum along the eigenvector and away from the initial
minimum. The system is then brought into an adjacent local
energy minimum using FIRE [58], although any controlled
minimisation algorithm that ensures convergence to the
nearest minimum can be applied.

2.4. Characterization and Comparison. ART nouveau has
been applied with success to a range of problems from
Lennard-Jones clusters to proteins and amorphous silicon
[11, 13, 17, 20, 21, 23, 26–30]. Its efficiency has been com-
pared previously with a number of other open-ended and

two-ended saddle-point searching methods. Olsen et al. [59]
compared the efficiency of various methods as a function
of the dimensionality of the studied system and found
that if, for low-dimensional problems, exact methods using
the knowledge of the full Hessian were preferable, those
that focus solely on the direction of lowest-curvature, such
as ART nouveau and the dimer method, provide a more
complete set of saddle points for large-dimensional system
at a much lower computational cost.

Olsen et al. also noted that for the same method, the
number of required force evaluations to reach a saddle point
grows with the effective dimensionality of the event taking
place. Looking at Pt diffusion on a Pt(111) surface, they
found that, as more atoms were allowed to move, the number
of force evaluations for their ART nouveau implementation
increased from 145, when a single atom was free, to 2163 with
175 free atoms [59].

In a recent paper, Machado-Charry et al. [30] compared
the accelerated ART nouveau algorithm with various saddle
point searching algorithms proposed in the last few years,
finding a similar relation between the effective dimension-
ality of diffusion events and the average computational
effort associated with finding a first-order saddle point. We
reproduce in Table 1 the summary of the analysis in [30].
We see that the latest implementation of ART nouveau,
which is many times faster than the original version [13], is
extremely competitive with other saddle-searching methods,
even double-ended algorithms such as the nudged-elastic
band (NEB) [6] and the growing string methods [7].

Table 1 also shows a few interesting details. First, saddle
points are found slightly faster using empirical rather than
ab initio forces. This is likely due to the finite precision of the
forces in quantum calculations that make the calculation of
the lowest-eigenvalue and eigenvectors less stable. As already
observed by Olsen et al. [59], the effective dimensionality of
a system also impacts on the number of force evaluations
needed to find a transition state. This effective dimension-
ality is related to the number of atoms that can move during
an event. This is why the effective dimensionality of defect
diffusion in the bulk can be lower than that at the surface
(Table 1) and the computational effort for finding a saddle
point does not diverge with system size, at least away from a
phase transition.

2.5. Application to Iron and Protein A. ART nouveau can
be applied to sample the energy landscape of complex
systems and search for minimum-energy states as can be seen
in the two applications presented here, to interstitial self-
diffusion in iron and protein folding, both described with
semiempirical potentials.

2.5.1. Interstitial Self-Diffusion in Iron. The ART nou-
veau method using an empirical potential is applied to
the systematic search in the energy landscape of small
self-interstitial clusters in iron from monointerstitial, I1,
to quadri-interstitial I4 [29]. The explored phase space
was the basin around the standard parallel configuration.
The goal is to explore binding states corresponding to
clustered interstitials, and not states made by separated
defects. These states are not very far in energy from the
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Table 1: Efficiency of various open-ended and double-ended saddle-point searching algorithms. The first four columns show results on
four different systems using the latest version of ART nouveau as described by Machado et al. [30]. The next four columns are results taken
from Olsen et al. [59] for their own implementation of ART nouveau and the dimer method. Two columns present results using improved
version of the dimer method coupled to ab initio force calculations for small organic molecules [60, 61]. The last column presents results
for the growing string method (GSM), a double-ended saddle search algorithm [62]. These systems are characterized as a function of their
boundary condition—bulk, surface, isolated, or solution—and the effective number of degrees of freedom of each system. A comparison is
made on the average number of force evaluations necessary to go from local minimum to a nearby saddle point for a successful search, 〈 f 〉.
More important, when evaluating the efficiency of the method, is the number of force evaluations required to find a first-order saddle point,
taking into account the lost events, 〈 f 〉s. 1Effective number of degrees of freedom. 2Starting near the saddle point and not from a minimum.
3Approximate number extracted from Figure 4 of [61] starting near the saddle point, not from a minimum.

Algo. ART nouveau ARTn (Olsen) Dimer method Improved dimer GSM

Ref. Machado et al. [30] Olsen et al. [59] [60] [61] [62]

System a-Si VSi C20 SiC Pt(111) Pt(111) Pt(111) Pt(111) C6H10 PHBH/H2O VOx/SiO2

BC Bulk Bulk Isol. Surf. Surf. Surf. Surf. Surf. Isol. Sol. Isol.

Pot. SW DFT DFT DFT Morse Morse Morse Morse DFT QM/MM DFT

Method PBE LDA PBE B3LYP AM1 B3LYP

DOF 3000 121 60 2221 3 525 3 525 48 144 121

〈 f 〉 235 210 322 262 145 372 204 335 3842 4253 330

〈 f 〉s 670 302 718 728 145 2163 204 2148 — — —

lowest parallel energy configuration, since the binding energy
is of the order of 1 eV. For this reason, the phase space
exploration was performed using a Metropolis algorithm
and a fictitious temperature. The value of the fictitious
temperature is a key parameter of the method. If it is
too high, most of the time is spent exploring dissociated
configurations. If it is too low, it could be the case that
the simulation misses clustered configurations belonging
to an energy basin separated from the initial one by a
high-energy saddle point. As a compromise, the fictitious
temperature was set to 1200 K. In addition, when the current
configuration settles at an energy 2 eV higher than the
lowest-energy configuration, it is replaced with the initial
configuration; in this way the system does not escape from
the basin of parallel configurations.

ART nouveau revealed a large number of distinct config-
urations which increase rapidly with cluster size, exceeding
400, 1100, and 1500 for I2, I3, and I4, respectively. The
formation energy spectra of three types of clusters have
few isolated low-energy configurations lying below a quasi-
continuum of states. This leads to the appearance of a
quasicontinuous band of states at relatively low energy above
the ground state at 0.42 eV, 0.23 eV, and 0.12 for I2, I3, and
I4, respectively (see Figure 2(a) for I4). This study, effectively
at zero K, provides an essential complementary approach to
the molecular dynamics simulations that must be run at high
temperature to allow for crossing sufficiently high barriers.

ART nouveau was also used for finding transition
pathways from high-energy configurations to lower-energy
configurations. We have ensured a broader exploration
of different ways to escape from the starting minima by
performing ART nouveau simulations with different values
of the fictitious Metropolis temperature, namely, 100 K,
400 K, and 800 K. Hence, we are able to provide the complete
path for the unfaulting mechanisms of the self-trapped
ring configurations I3−4. These configurations were recently

proposed for the interstitial clusters [53]: in the I3 case
the ring configuration is made of three nonparallel 〈110〉
dumbbells in a 〈111〉 plane and, in the I4 case, obtained

from I
ring
3 by adding a 〈111〉 dumbbell at the center of

the ring. These configurations, being composed of nonpar-
allel dumbbells, can be considered as faulted loops which
cannot migrate by the simple step mechanism. However,
ART nouveau was able to find a transition path for the

unfaulting mechanism of the I
ring
3 (not shown) and I

ring
4

into the standard parallel configurations I〈110〉
3 and I〈ζσ0〉

4

(Figure 2(b)), respectively. ART nouveau generates successful
un-faulting pathways with great efficiency and determines
the fastest one at low temperature, in qualitative agreement
with the brute force molecular dynamics calculations per-
formed at higher temperature [53, 63].

2.5.2. Protein A. ART nouveau can also be applied to
molecules such as proteins, to characterize folding [20,
38] and aggregation [37, 64, 65]. Of course, because the
algorithm does not activate the full solvent, most solvent
molecules see an effective T = 0 temperature, and proteins
must be in vacuum or in implicit solvent, to avoid freezing
of the surroundings. This restriction is not as severe as
a large fraction of molecular dynamical simulations are
also performed with implicit solvent and reduced potentials
to accelerate sampling. Moreover, by leaving aside thermal
fluctuations, ordered conformations are easier to identify,
providing a clearer picture of various folding and aggregation
pathways.

Among others, ART nouveau was applied to study
folding of protein A, a fast-folding 60-residue sequence that
adopts a three-helix bundle conformation in its native state.
Because of its relatively low complexity, protein A has been
extensively studied to understand protein folding (e.g. [66–
68]). To identify folding mechanism for the full 60-residue
Y15W mutant (PDB : 1SS1), 52 trajectories were launched
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Figure 2: (a) Histogram of the relative formation energies and associated barrier energies (red squares and left vertical axis) of the ART
nouveau-generated configurations for tetrainterstitials in iron modeled by the Ackland-Mendelev potential. The zero energy is the energy
of the most stable configuration. The vertical axis on the right-hand side (associated with the bars) corresponds to the number of distinct

minima found by ART nouveau. (b) Transition pathway for the unfaulting mechanism of the ring configuration of the tetrainterstitial, I
ring
4 ,

into the most stable configuration, I〈ζσ0〉
4 (reproduced from [53]).

from three different initial configurations: fully extended
and two random coiled conformation with right and left
handedness. Simulations were run for 30 000 to 50 000
events with a Metropolis acceptance rate around 45% at a
temperature of 900 K. To obtain well-relaxed conformations,
each trajectory was run for a further 8000 events at 600 K.
We note that, because ART nouveau does not include
entropic contributions, the Metropolis temperature does not
correspond directly to a physical temperature. The evolution
of four folding trajectories, as characterized by the fraction of
folded H1, H2, and H2 helices and the total energy, is shown
in Figure 3. They show diversity in folding pathways that does
not support a predetermined sequential folding. The helix
formation, however, clearly occurs as the tertiary structures
lock in, suggesting instead that folding of protein A is highly
cooperative in agreement with the funnel picture [69].

Of the 52 trajectories, 36 adopt a structured conforma-
tion with an energy below −116 kcal/mol and belonging
to one of the groups presented in Figure 4. The first two
correspond to the native left-handed structure and its slightly
less stable mirror image, which is also observed in other
simulations [70, 71]. Configurations in Figures 4(c) and
4(d), called φ-shaped structures, represent intermediate
states on the folding pathway as can be seen in Figure 3. The
four structures on the bottom line show high β-content low-
energy off-pathway conformations. These are many kcal/mol
higher in energy than the native state and, clearly, have
only a very low probability of forming. They can provide
information useful for understanding structural differences
between sequences with close homology. For example,
structure in Figure 4(h) is close to 1GB1 (with an important
difference in the packing of the β-hairpins). The existence
of this unstable structure can explain why it is possible
for the three-helix bundle to convert to protein G topolo-
gy with a 59% homology between mutated sequences [72].

As a general rule, although ART nouveau does not
provide kinetic information regarding trajectories, it can

provide information regarding the crucial steps in relaxation,
folding, and aggregation patterns for relatively large systems
that are not dominated by entropic considerations. In protein
A, ART nouveau managed to identify metastable ordered
structures of higher energy that can shed light on close
homological sequences. Finally, ART nouveau is also a
very interesting tool for exploring conformation of large
biological systems, if it is coupled with internal coordinates
and multiscale representations [73, 74].

3. Kinetic ART

While ART nouveau is very efficient for finding saddle
points, it cannot be applied directly to evaluate the dynamics
of a system as the inherent bias for selecting a specific
barrier over the others is not known. In the absence of such
characterization, ART nouveau is ideal to sample possible
events that can then serve either in a master equation or in
a kinetic Monte Carlo scheme.

As mentioned in the introduction, the first approach has
been attempted by Wales [39], who applied their scheme
to protein folding [40–42]. Here, the main challenge is the
handling of the rate matrix, which grows rapidly with the
dimensionality of the system and which is very sensitive to
a complete sampling of low-energy barriers. Other groups,
starting with Henkelman and Jónsson, implemented a simple
on-the-fly KMC approach with sampling of events after every
step [43–45, 47]. This solution is time consuming, as new
searches must be launched at every step, and makes little use
of previously found events.

Recently, a number of kinetic Monte Carlo algorithms
have been proposed to address some of these concerns
by constructing a catalog: the kinetic ART [48], the self-
learning KMC [50], the self-evolving atomistic KMC [51],
and the local-environment KMC [75]. The challenge, for
all these methods, is threefold: (1) ensuring that the most
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Figure 3: Evolution of trajectory #18 (a), #32 (b), #35 (c), and #25 (d). Top graphs: formation of the helical regions H1 (green), H2 (blue),
and H3 (magenta) into helices and evolution of the energy level (red). The blue box of (d) indicates that a lower temperature criterion was
used for that part of the simulation. All lines are smoothed by a Gaussian of width σ = 0.1 (reproduced from [38]).

relevant events are correctly included in the catalog, (2)
devising a classification scheme that is efficient and can
correctly discriminate events even in complex environments
such as alloys and disordered materials, and (3) updating,
on the fly, the energy barrier in order to fully take into
account short- and long-range elastic deformations. While
the various recently proposed KMC methods address some
or all of these challenges, they will be rapidly evolving over
the coming years. Because of this, we focus here on kinetic
ART, the method we have developed and which provides one
possible answer to the difficult problem of simulation long-
time activated dynamics in complex environments.

Our approach attempts to minimise the computational
efforts while preserving the most correct long-time kinetics,
including long-range elastic effects. To do so, it is necessary
to generate an event catalog that can be expanded and reused
as simulations progress or new simulations are launched and,
contrary to the vast majority of KMC schemes available, can
handle off-lattice atomic positions. This catalog must be as
compact as possible, that is, offer an efficient classification
scheme, yet be sufficiently flexible to handle alloys, surfaces,
and disordered environments. In an off-lattice situation, no
catalog can provide precise energy barriers, as short- and
long-range elastic deformations will affect the local environ-
ment. Rates, if derived from the catalog, must therefore be
reevaluated at each step to include elastic effects.

This is what kinetic ART achieves by using ART nouveau
for generating new events and update energy barriers, cou-
pled with a topological classification for local environments,
which allows the construction of a discrete event catalog
based on a continuous geometry even in the most complex
environment.

Before going into details, it is useful to present the main
steps of the algorithm.

(1) Starting from a local energy-minimum, the local
topology associated with each atom is analyzed. For
each topology, ART nouveau searches are launched
and new events are added to the catalog of events
and attached to this topology. In order to ensure
that the catalog is complete, event searches are not
limited to new topologies: the number of searches is
proportional to the logarithm of the frequency with
which a topology appears in a given simulation. All
events associated with the configuration at the local
energy-minimum are added to the tree.

(2) All low-energy events are reconstructed and the
transition state is refined to take the impact of long-
range elastic deformations on the rate into account.

(3) With all barriers known, the average Poisson rate
is determined according to the standard KMC
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φ-like structures

Partial β-sheets elements structures

Figure 4: The structure of lowest energy found through independent simulations at 900 K followed by a energy refining simulations at 600 K.
(a) The left-handed native-like bundle found in 4 simulations; (b) the right-handed mirror image found 7 times; (c) φ-like structures with
complete H3 helix-3 simulations; (d) φ-like structures with complete H1 helix-4 simulations. (e) to (h) show representative structures of
families of conformations with a significant β-sheet components: (e) found in 8 simulations, (f) in 3 simulations, (g) in 5 simulations, and
(h) in 2 simulations. Not represented here are the 16 simulations which did not find a configuration of energy lower than −116.0 kcal/mol
(reproduced from [38]).

algorithm; the clock is pushed forward and an event
is selected at random, with the proper weight [76].

(4) We go back to (1).

Each of these steps involves, of course, a number of elements,
which we describe in the following sections.

3.1. Topological Analysis: Constructing an Off-Lattice Event
Catalog. In order to construct a catalog of events, it is
necessary that these be discretized to ensure that events
are recognized uniquely. For lattice-constrained motion, this
requirement is straightforward to implement by focusing
simply on the occupancy of the various crystalline sites.
Geometry, however, is no longer a satisfactory criterion
for reconstructed sites, defective and disordered systems,
where atoms cannot easily be mapped back to regular lattice
sites. Our solution is to use a topological description of
local environments for mapping events uniquely, allowing us
to describe environments of any chemical and geometrical
complexity. This is done by first selecting a central atom
and all its neighbors within a given cut-off radius. Atoms
are then connected, following a predefined procedure that
can be based loosely on first-neighbor distance or a Voronoi

construction, forming a graph that is then analysed using the
software NAUTY, a powerful package developed by McKay
[75]. For our purposes, this package returns a unique tag
associated with the topology and an ordered list of cluster
atoms. The positions of the topology cluster atoms in the
initial, saddle, and final states are stored.

For this discretization to work, it is necessary that a
one-to-one correspondence exist between the topological
description and the real-space geometry of this local region.
This correspondence is enforced by the fact that the graph
has to be embedded into a well-defined surrounding geome-
try and must correspond to either a local minimum or a first-
order saddle with the given forcefield. These two elements
ensure that the one-to-one correspondence is valid in the vast
majority of conformations.

This correspondence may fail in two cases: for very flat
minima or saddle points, there might be more than one
topology associated with the geometry. In this case, the
corresponding events might be overcounted. For this reason,
we compare the barrier height as well as the absolute total
displacement and the direction of motion of the main atom
(the one that moves most during an event) both between
initial and final state and between initial state and the saddle



Journal of Atomic, Molecular, and Optical Physics 9

point. We only add events to the catalog that are sufficiently
different from previously found ones.

It is also possible that a single topology corresponds
to more than one geometry. Most frequently, this problem
appears in highly symmetric systems: two topologically
identical events might differ only in the direction of motion.
To resolve this issue, we reconstruct geometry and ensure
that motion takes place in different directions. In this
case, events are flagged as different and additional ART
nouveau searches are performed to identify all topologically
equivalent but geometrically different moves.

In some cases, a topology is associated with funda-
mentally different geometries. Here, this failure is identi-
fied automatically, since it leads to incorrect saddle-point
reconstruction that cannot be converged. When this occurs,
the algorithm automatically modifies the first-neighbor cut-
off used for constructing the topology until the multiple
geometries are separated into unique topologies. In most
systems, this is extremely rare, and it is generally a symptom
of an inappropriately short topology cutoff radius.

Generic and Specific Events. Once a new topology is iden-
tified, ART nouveau saddle point searches are launched a
number of times from the central atom associated with this
topology (to increase the efficiency of finding topologies with
multiple geometries, events are launched from a randomly
selected set of atoms characterized by the same topology).
Depending on the system, we use between 25 and 50
searches for every log10 times we see a topology (e.g., 25–
50 searches for a topology appearing once, 75–150 searches
for a topology seen 100 times, etc.). To ensure detailed
balance, these events are stored from both the initial and
final minima.

These events, which are stored in the catalog, are
called generic events and serve as the basis for reconstruct-
ing specific events associated with a given configuration.
They can be accumulated and serve for further studies,
decreasing over time the computational efforts associated
with studying particular systems. For example, a catalog
constructed for ion-implanted Si can be used as a starting
point for amorphous silicon or an SiGe alloy (as mentioned
previously, the topological analysis allows us to handle
correctly alloys, by discriminating between the atomic
species involved).

3.2. Reconstructing the Geometry and Refining Low-Energy
Events. While representative, the transition states and energy
barriers in the catalog cannot be applied exactly as they
are to new configurations, as short- and long-range elastic
deformations affect every barrier differently, creating favored
directions even for formally isotropic defects, for example.

To include these effects, every generic event should be
reconstructed for each atom and fully relaxed. This is what
kinetic ART does, with one approximation: to limit the effort
of refining generic into specific events, only the kinetically
relevant events are reconstructed and relaxed.

After each KMC step, the event list is ordered according
to the barrier energy and only the lowest-energy barrier
events, representing up to given threshold (we use typically

99.9 or 99.99%) of the total rate are fully reconstructed and
refined. Depending on the system and the temperature, this
means that only one to ten percent of all barriers in the
catalog are refined specific events. The remaining events,
which contribute very little to the rate, are cloned from the
generic events without adjusting the barrier.

This local reconstruction takes place in two steps. First,
using the reference atomic positions of the generic event, the
geometric transformation necessary to map the initial state
onto the current configuration is determined. This operation
is then applied to the atomic displacements between initial
state and saddle point. From this first reconstruction of the
saddle point geometry, the saddle point (and with it the
energy barrier) is refined. In the second step, the system
is relaxed into the final state by pushing it over the saddle
point. If it is impossible to map the initial state onto the
current configuration even though the central atoms have the
same topology, we know that the one-to-one correspondence
between topology and geometry has failed and apply the
corrections mentioned in the previous section.

3.3. Applying the Standard KMC Procedure. The reconstruc-
tion of specific events ensures that all elastic and geometrical
deformations are taken into account when constructing
the list of events that is used in the kinetic Monte Carlo
algorithm. This list now contains both refined low-energy
specific events and clones of generic events with higher
barrier energies.

Rates are determined according to transition state theory:

ri = τ0 exp
(−ΔEi
kBT

)
, (2)

where τ0, the attempt frequency, is a system-dependent fixed
constant of the order of 1013 s−1; ΔEi = Esaddle − Eminimum

is the barrier height; kB and T are the Boltzmann constant
and the temperature, respectively. While it would be possible
to extract a more precise attempt frequency from quasi-
harmonic theory, we know that τ0 varies only weakly with
the chosen pathway for a large number of systems [77, 78].

These rates are then combined, following Bortz et al.
[76], to extract the Poisson distributed time step over which
an event will take place:

Δt = − lnμ∑
i ri

, (3)

where μ is a random number in the [0,1] interval introduced
to ensure a Poisson distribution and ri is the rate associated
with event i. The simulation clock is pushed forward by this
Δt an event is selected with a weight proportional to its
rate, and the atoms are moved accordingly. Finally, the whole
system is relaxed into a minimum energy configuration, and
the next step can proceed.

3.4. Other Implementation Details. The local properties of
kinetic ART allow a very efficient implementation of the
algorithm. First, it is straightforward to dispatch the event
searching and refining to separate processors. For a typical



10 Journal of Atomic, Molecular, and Optical Physics

E
n

er
gy

 (
eV

)

Simulated time

10

0

−10

−20

−30

−40

−50

−60
10 ps 1 ns 100 ns 10 μs 1 ms

(a)

B
ar

ri
er

 (
eV

)

N
u

m
be

r 
of

 to
po

lo
gi

es

Simulated time

0

0.1

0.2

0.3

0.4

0.5

0.6

0

2000

4000

6000

8000

10000

10 ps 1 ns 100 ns 10 μs

(b)

Figure 5: (a) The total potential energy of the bombarded c-Si crystal during annealing at 300 K. We show three simulations that have
the same initial configuration. (b) The energy barriers crossed during a c-Si anneal at 300 K are represented by the stars. The number of
topologies where we performed ART searches is shown as a continuous line.

system, between 20 and 40 processors can be used for these
tasks (up to 128 when building the initial catalog), with an
efficiency of 90% or more. Moreover, as events are inherently
local, there is no need to compute global forces during
an ART nouveau event: only nonzero forces need to be
computed most of the time, with a final global minimization
needed only at the end of each KMC step. This renders
the algorithm for computing an event almost independent
of system size for a fixed number of defects and order N
overall in simulated time for a system with a constant defect
density, at least with short-range potential, making it scale as
efficiently as molecular dynamics in this worst case scenario.

In KMC, the residence time Δt and the selection of
the next state are dominated by the lowest-energy barrier
present in the system. Groups of states separated by such
low-energy barriers are called basins. These pose a major
obstacle to KMC simulations: basin transitions are often
nondiffusive and trap the simulation in a small part of
the configuration space. Additionally, the high rates also
severely limit the time step, thus increasing the CPU cost
without yielding meaningful physics. We developed the
basin-autoconstructing mean rate method (bac-MRM) [49],
based on the MRM described by Puchala et al. [79], to
overcome this limitation. If an event is selected that matches
the description of a basin event (small energy difference
between saddle point and both initial and final state), the
event is executed and then added to the current basin
of events. Kinetic ART keeps all other available events in
memory and adds to this list those originating from the
state in which the system is now. This means that before
the next KMC step, events originating from all basin states
could be selected. The rates of the events are then adjusted to
average over all possible numbers of intrabasin transitions.
This assures that the next event and the time step are picked
with the correct distribution, providing the correct kinetics

even though, of course, the intrabasin trajectory information
is lost. If the next event is another basin event, the basin is
expanded again. This procedure is repeated, until a nonbasin
event is selected (usually after all basin events have been
added to the basin). The bac-MRM assures that the system
will not visit any basin state twice and thus makes sure that
the system can escape being trapped in configuration space.

3.5. Example: Relaxation of an Ion-Bombarded Semiconductor.
We first demonstrate the capability of kinetic ART by
applying it to the relaxation of a large Si box with ion
implantation. In a previous work by Pothier et al. [79], a Si
atom was implanted at 3 keV in a box containing 100 000
crystalline silicon (c-Si) atoms at 300 K. This system was
then simulated for 900 ps with molecular dynamics and the
Stillinger-Weber potential. From the final configuration of
this simulation, we extracted a smaller box of 26 998 atoms
which contains the vast majority of induced defects and
imposed periodic boundary conditions.

Kinetic ART is applied at 300 K on this complex system.
Figure 5(a) reports the evolution of three simulations with
the same initial configuration over 3000 events, each reaching
simulated time of over 1 ms, at a cost of 8000 CPU-hour.
During this time, the system relaxes by nearly 60 eV as
numerous defects crystallize. Furthermore, we see that the
potential energy drops are not all identical. This indicates
that a wide variety of relaxation mechanisms take place on
these timescales.

Meanwhile, Figure 5(b) shows the energy barriers of the
events which were executed in one of the simulations. The
gaps in time are a consequence of the bac-MRM mentioned
in Section 3.4. Indeed, if a basin contains some moderately
high barriers, we will spend a good deal of time in it without
sampling new states. This figure also shows the richness
of the energetic landscape. We execute events with a great
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Figure 6: Simulation of an a-Si model containing 1000 atoms at
300 K. The simulation was started using a previously built event
catalogue of over 87 000 events. Top: The number of new topologies
searched and the total runtime as a function of simulated time.
Bottom: The change in energy and the squared total displacement
as a function of simulated time.

variety of energies, which show the great importance of
treating elastic effects with exactitude. The great number of
new topologies we encounter (even though the system lowers
its energy) is another hint at the richness of this system.

While standard KMC simulations easily run for millions
of steps, regularly reaching timescale of minutes or more,
fundamental restrictions have limited them to simple lattice-
based problems such as metal on metal growth. The
possibility, with kinetic ART, to now apply these accelerated
approaches to complex materials such as ion-bombarded Si,
oversimulated timescale many orders of magnitude longer
than what can be reached by MD, opens the door to the study
in numerous systems of the long-time atomistic dynamics
that was long considered out of reach. This is the case for
fully disordered systems.

3.6. Example: Relaxation in Amorphous Silicon. Here, we
show that even such complex materials such as amorphous
silicon (a-Si), a system that has been used as a test case for
ART over the years [11, 12], can be handled with kinetic
ART.

Disordered systems are characterized by an extremely
large number of possible configurations that exclude studies
with traditional lattice-based Monte Carlo methods. Event
catalogues will therefore be large, as almost each atom in a
box of a few thousand atoms has its own topology. However,
since the topological classification is based on the local
environment, it still provides for a real gain given enough
sampling.

Figure 6 shows a 28.5 μs simulation, started with a
well-relaxed 1000-atom a-Si model and a preformed event
catalogue of over 87 000 events at 300 K. Since the original
configuration is already well explored, the simulation needs
to generate only a few events every time a new topology
is found, underlining the powerful capabilities of kinetic
ART to generate and classify activated events in complex
environments. Over the 2542 KMC steps of the simulation,
only 1000 new topologies were found.

In a system such as a-Si, the continuous distribution of
activated barriers means that there is not a clear separation
between frequent and rare events. The energy cutoff for bac-
MRM is then chosen so that the inverse of the associated
rate is small compared to the desired simulated time. Since
in an amorphous system flicker-like events can occur at any
energy scale, the value must be adjusted as a function of
the degree of relaxation and temperature. In the present
case, the cutoff value was 0.35 eV, meaning that while
the thermodynamics is accurate at all scales, internal dyna-
mics on timescales lower than 120 ns is ignored. This
simulation required 617 CPU-hours over six processors for
a total run-time of 103 hours. As shown in Figure 6, with a
well-filled catalog, only a few hundred unknown topologies
are visited during the simulation.

Starting from a well-relaxed configuration, the simula-
tion quickly reaches the μs timescales, where higher-energy
flicker-like events dominate the dynamics. Still, the system
finds a way to relax at three occasions. For instance, the
large drop observed at 8.7 μs is the result of the system
choosing an event with a large 0.51 eV barrier. Interestingly,
the event involves only perfectly coordinated atoms and
can be characterized as a bond-switching move where two
neighboring atoms exchange neighbors, allowing an atom
with a high angular strain on three of its bonds to relax near
its equilibrium state.

Even though disordered systems require more com-
putational efforts than crystalline-based defective systems,
the application of kinetic ART to such systems allows the
study of kinetics on timescales well beyond what could have
been reached until now using more traditional molecular
dynamics, as can be seen here, in a short test simulation.

4. Conclusion

We have presented the activation-relaxation technique, ART
nouveau, a very efficient open-ended search method for
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transition state, and have shown how it can be applied to
extensively search for diffusion mechanisms and pathways
as well as low-energy configurations with systems as diverse
as interstitials in iron and a 60-residue protein. With recent
improvements, finding a transition can take as little as
210 force evaluations and, when lost events are taken into
account, between 300 and 700 force evaluations, allowing for
extensive searches, with either empirical or ab initio forces,
needed to fully describe the energy landscape of complex
systems.

As the event-selection bias is unknown in ART nouveau,
it cannot be used directly to study the kinetics of atomistic
systems. This limitation is lifted by coupling it to a kinetic
Monte Carlo scheme. Kinetic ART goes beyond this simple
coupling, however, by introducing a topological classification
for catalog building while fully preserving the impact of
elastic deformations on the kinetics while being fully off-
lattice. The efficiency of this approach was demonstrated
by characterizing the relaxation of a 30 000-atom ion-
bombarded box of silicon and a 1000-atom box of amor-
phous silicon.

Although not presented here, the algorithm also readily
handles other systems such as metals and alloys. At the
moment, this is done using a fixed prefactor for the
attempted frequency in transition state theory. As discussed
previously, such an approximation is fairly good for a
number of systems. However, we are currently implementing
a version of the algorithm that also evaluates prefactors.
While this is more costly, it could be essential to describe
correctly the kinetics of complex materials.

Both ART nouveau and kinetic ART open the door
to the study of questions that were out of reach only
a few years ago, either to identify diffusion mechanisms and
catalytic reactions or to recreate full diffusion and relaxation
pathways in complex materials such as alloys and glasses on
timescale that had been out of reach until now. As discussed
previously, a number of other accelerated techniques have
been proposed recently and it is too early to determine
whether one method will really stand out. Irrespective of this,
ART nouveau and kinetic ART have already shown what they
can be used for.
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[61] J. Kästner and P. Sherwood, “Superlinearly converging dimer
method for transition state search,” Journal of Chemical
Physics, vol. 128, no. 1, Article ID 014106, 2008.

[62] A. Goodrow and A. T. Bell, “A theoretical investigation of the
selective oxidation of methanol to formaldehyde on isolated
vanadate species supported on titania,” Journal of Physical
Chemistry C, vol. 112, no. 34, pp. 13204–13214, 2008.

[63] Y. Fan, A. Kushima, and B. Yildiz, “Unfaulting mechanism of
trapped self-interstitial atom clusters in bcc Fe: a kinetic study
based on the potential energy landscape,” Physical Review B,
vol. 81, no. 10, Article ID 104102, 2010.

[64] A. Melquiond, G. Boucher, N. Mousseau, and P. Derreumaux,
“Following the aggregation of amyloid-forming peptides by
computer simulations,” The Journal of chemical physics, vol.
122, no. 17, p. 174904, 2005.

[65] N. Mousseau and P. Derreumaux, “Exploring energy land-
scapes of protein folding and aggregation,” Frontiers in
Bioscience, vol. 13, no. 12, pp. 4495–4516, 2008.

[66] H. Gouda, H. Torigoe, A. Saito, M. Sato, Y. Arata, and
I. Shimada, “Three-dimensional solution structure of the
B domain of staphylococcal protein A: comparisons of the
solution and crystal structures,” Biochemistry, vol. 31, no. 40,
pp. 9665–9672, 1992.

[67] J. K. Myers and T. G. Oas, “Preorganized secondary structure
as an important determinant of fast protein folding,” Nature
Structural Biology, vol. 8, no. 6, pp. 552–558, 2001.

[68] S. Sato, T. L. Religa, V. Dagget, and A. R. Fersht, “Testing
protein-folding simulations by experiment: B domain of
protein A,” Proceedings of the National Academy of Sciences of
the United States of America, vol. 101, no. 18, pp. 6952–6956,
2004.

[69] J. N. Onuchic and P. G. Wolynes, “Theory of protein folding,”
Current Opinion in Structural Biology, vol. 14, no. 1, pp. 70–75,
2004.

[70] J. Lee, A. Liwo, and H. A. Scheraga, “Energy-based de novo
protein folding by conformational space annealing and an
off-lattice united-residue force field: application to the 10–55
fragment of staphylococcal protein A and to apo calbindin
D9K,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 96, no. 5, pp. 2025–2030, 1999.
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