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The properties of materials, even at the atomic level, evolve on macroscopic time scales. Following this
evolution through simulation has been a challenge for many years. For lattice-based activated diffusion,
kinetic Monte Carlo has turned out to be an almost perfect solution. Various accelerated molecular
dynamical schemes, for their part, have allowed the study on long time scale of relatively simple systems.
There is still a need, however, for methods able to handle complex materials such as alloys and disor-
dered systems. Here, we review the kinetic Activation–Relaxation Technique (k-ART), one of a handful
of off-lattice kinetic Monte Carlo methods, with on-the-fly cataloging, that have been proposed in the last
few years.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Computational materials science covers a wide range of time
and length scales: from the electronic motion to crack propagation
and aging. Among the challenges that this discipline faces is the
need to cover multiple scales in a self-coherent fashion in order
to relate with experiments and real-life phenomena. In spite of con-
siderable efforts that have spanned decades, no complete answer to
this challenge exists. Nevertheless, progress takes place and partial
solutions are being proposed and applied, not necessarily to generic
problems, but at least to specific classes of technologically-relevant
materials. Irrespective of these unwelcome restrictions, these
developments constantly open up new areas of study to the field.

Here, we are concerned with bridging the time gap between
simulations and experiments while preserving a detailed descrip-
tion at the atomic level. This concern is not new. Over the past four
decades, a number of groups have proposed methods to achieve
this goal [1–7]. In this review, we focus on a recently proposed
algorithm, the kinetic Activation–Relaxation Technique (k-ART)
[8,9], a method that bridges the time domain reaching, at
experimentally-relevant temperatures, a second and event more.
k-ART describes the atomic motions as particles diffuse and affect
microscopic and macroscopic properties of complex materials
dominated by activated processes. More precisely, k-ART is an
off-lattice kinetic Monte Carlo method with on-the-fly cataloging
capabilities. First proposed in Ref. [8], it has since been applied
to a number of systems – including implanted crystalline silicon,
amorphous silicon, crystalline iron and, more recently, alloys,
showing a rich versatility and providing important insights by fol-
lowing the atomistic off-lattice motion of these complex systems
over a time scale of up to one second and more [9–12]. In this
review, we present an overview of k-ART (Section 2), that will
allow the reader to gain a general understanding of the method,
a review of recent applications (Section 3 and a more detailed
description of our implementation (Section 4).

Of course, a number of other accelerated methods have been
put forward over the years, many if which are described elsewhere
in this special issue, and we briefly compare them to k-ART in
Section 5. We will show, in particular, that k-ART is uniquely suited
for the simulation of a large number of complex systems where
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Fig. 2. Schematic representation of the energy landscape surrounding a deep local
minimum. The thin black line represents a trajectory through the landscape. Since
the barriers leading out of the local minimum in the center are high with respect to
the temperature, the system spends a long time in this basin, and has lost memory
of its past states by the time it manages to escape. It is therefore possible to fully
characterize this state by the minimum-energy configuration, at the bottom of this
well, and the curvature around this minimum.
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atoms are not confined to crystalline lattice position and where
elastic deformations are important.

2. An overview of k-ART

Kinetic ART is a stochastic event-based kinetic algorithm. This
means that its time scale is set by the nature of the local energy
landscape and not by the integration of the equations of motion
as in molecular dynamics. When the right conditions are met,
the trajectory produced with this method is as valid and physical
as with molecular dynamics. These conditions are well-defined
by the transition state theory (TST), developed independently by
Eyring [13] and Evans and Polanyi [14] (see Ref. [15] for a historical
perspective). Fig. 1 presents the flowchart for this algorithm, which
is detailed in the rest of this section.

2.1. The fundamentals of kinetic Monte Carlo

Here, we are concerned with the time evolution of a system
characterized by relatively deep local metastable states, i.e. states
isolated from others by energy barriers that are high with respect
to the temperature. In this case, the time evolution is controlled by
rare barrier crossings that bring the system from a well-defined
local minimum into a new one. This rare-event process ensures
that hops from local minimum to local minimum are completely
uncorrelated so that the escape event selected at a time tn is per-
fectly independent from that at time tn�1 (see Fig. 2). It also ensures
that no two hops take place at exactly the same time, so that
events can be uniquely ordered in time. In this case, the dynamical
role of phonons – or thermal vibrations – becomes limited to dec-
orrelating the hops and to provide a rare boost through thermal
fluctuations. Thermal vibrations allow therefore the system to gain
sufficient energy in a given direction and to reach a transition state
leading to a new minimum. When these criteria are met, the tran-
sition state theory establishes how one can go to compute the
escape rates from a local minimum (see, for example, Voter et al.
[15]). With these rates at hand, as described below, it is then pos-
sible to generate physically-based kinetic trajectories that are fully
described by minimum-energy configurations along the way and
the escape rates towards neighboring states.

The basic idea behind kinetic Monte Carlo (KMC), introduced by
Bortz et al. [16] and first applied to materials by Voter [17], is that
when a system is trapped into an energy-minimum separated by
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Fig. 1. Flowchart of the implementation of k-ART structure.
large enough barriers with respect to the temperature, all memory
from its previous states is forgotten before it leaves for a new
states. This decorrelation is fully justified by the fundamentally
chaotic nature of (deterministic) dynamical trajectories (see [18],
for example). In this case, it is possible to simply consider that
the pathway is constructed of uncorrelated steps each determined
at random from a set of events fjg associated to a minimum i, each
defined by its own rate, Ri!j.

The time evolution through those internal stochastic processes,
is simply driven by the master equation

@PiðtÞ
@t

¼
X

j

PjðtÞRj!i � PiðtÞRi!j
� �

; ð1Þ

which gives us the probability Pi of finding the system in the min-
imum i at time t. Here, j runs over all states except i.

Since the probability that any event takes place is considered
random, the escape rate ri

e from the local minimum is simply given
by the sum of the rates

ri
e ¼

X
j

Ri!j; ð2Þ

with the first-passage escape time out of the minimum taken from a
Poisson distribution characterized by this escape rate,

te ¼ �
lnl
ri

e
; ð3Þ

where l is a random number taken from ½0;1� at which point an
event j is produced with a probability given by its relative rate:

Pi!j ¼
Ri!j

ri
e
: ð4Þ

Algorithmically, KMC consists therefore only of three steps:

1. From a given configuration, identify all escape events and
their associated rate.

2. Compute the first-passage escape time (Eq. (3)).
3. Select an event at random with the proper probability

(Eq. (4)) and move the system accordingly.

Those simple three steps allow us to solve equation (Eq. (1))
through a stochastic approach. The elegance of this method lies
in its simplicity but also in the fact that, contrary to most Monte
Carlo algorithms, selected events are always accepted.

For lattice-based problems with short-range interactions, the
implementation of KMC is straightforward as rates are readily
defined at the root of the model itself.



Fig. 3. Flowchart of the implementation of ART nouveau at each n KMC-step to
generate events for k-ART.
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The application of KMC to materials is more difficult, however,
mostly because of the difficulty associated with identifying events
and computing the associated rates. k-ART addresses this issue at
the expense of heavier computational load compared to standard
KMC, still offering considerable speed-ups compared to standard
molecular dynamics (MD) which remains the gold standard due
to its versatility and simplicity.

In the next two subsections, we describe the k-ART approach to
generating and classifying events around each minimum, provid-
ing the basic information needed for KMC. In the last paragraph,
we give a short overview of a few other aspects of the algorithm
that are necessary to make the code efficient.

2.2. An off-lattice KMC approach with on-the-fly catalog building
capabilities

Kinetic ART lifts three restrictions generally associated with
standard KMC implementation to materials. First, it introduces
an efficient approach for on-the-fly updating of the event catalog.
Second, it provides a route to regrouping and classifying similar
off-lattice events without limiting the set of possible activated
mechanisms. Third, it ensures that short- and long-range elastic
deformations are fully taken into account in the barrier height.

The first restriction is lifted with the use of an open-ended algo-
rithm for finding transition with knowledge of only one end-point
(local minimum). A number of algorithms have been proposed in
the past to accomplish this task, many of them being very similar
in their spirit and their efficiency [19–21]. Here, we use ART nou-
veau [22–24], an efficient Lanczos-based Activation–Relaxation
Technique that was developed and improved over the past
20 years in our group (see, for a comparison with other methods,
Refs. [24,28] as well as a few papers in this issue).

The cataloging of off-lattice events is a crucial step in the devel-
opment of k-ART. Achieving an optimal balance between a suffi-
cient catalog for off-lattice events and sufficiently long timescales
was the essence of the algorithmic developments in k-ART For this,
it is necessary to develop a simplified scheme that reduces the
complexity of off-lattice geometries: in k-ART, the classification
provides a discrete list of approximate positions for transition
states available from a given local minimum. The exact rate must
be obtained after full reconstruction of the transition state and pre-
cise convergence to the specific saddle point. This last step ensures,
in addition, that short- and long-range elastic deformations are
fully accounted for.

More precisely, k-ART poses that similar geometries will have
the same set of events, which will differ in barrier height in local
rearrangements. It is therefore possible to assign a set of generic
events to each family of geometries and, for each configurations,
reconstruct from those the specific events.

Geometries, especially in complex materials with off-lattice
positions, are difficult to discretize. k-ART uses the fact that, for
most systems dominated by activated dynamics, there is a one-
to-one correspondence between local topology and local geometry,
within the limits discussed below. Topology being in essence dis-
crete, it is straightforward – once this transformation is adopted –
to move off-lattice with the same ease as standard KMC algorithms.

Details matter, of course. In the rest of this section, we review
the general ideas behind k-ART. Specific implementation details
and options can be found in Section 4.

2.3. Getting the events: the Activation–Relaxation Technique (ART
nouveau)

Except in very simple systems, it is difficult to identify by
inspection all possible pathways connecting a local minimum with
its neighbors. Even for the diffusion of a metallic atom on a (100)
surface, where hops between neighboring sites appear as the most
efficient diffusion pathways, Kellogg and Feibelman showed,
25 years ago, that an exchange-mechanism where the surface atom
moves into the bulk, pushing the neighboring atom out on the sur-
face could also be energetically favorable, multiplying considerably
the number of pathways that must be taken into accounts for the
kinetics (see Fig. 4) [25]. A decade later, Henkelman and Jónsson
showed that the exchange moves could lead to much further effec-
tive surface displacements with a similar energy barrier [1].

In general, therefore, it is preferable to use open-ended search
methods for generating the list of possible diffusion events sur-
rounding a local minimum on a high-dimensional energy land-
scape. Over the years, a number of such methods have been
proposed [19,22,26,27], most very similar in spirit but with differ-
ing implementation details [28].

The open-ended method implemented here, ART nouveau
[23,24,29], generates events through three fundamental steps:
starting from a local minimum, first leave the harmonic basin, sec-
ond converge to saddle point, and third relax to a new local mini-
mum stage. In more detail, the ART algorithm consists of the
following steps (see also Fig. 3):

1. Consider VðqÞ to be the potential energy of a system of N
particles (with q ¼ f~r1; ~r2; . . . ; ~rNg being a 3N-dimensional
vector) and its 3N-dimensional force FðqÞ ¼ �dVðqÞ=dq.
The system is first brought into a local-energy minimum
configuration, qn, using a standard energy minimization
approach (FIRE [30] or conjugate gradient minimization).
At the start of ART nouveau, therefore, FðqnÞ ¼ 0.

2. We produce an initial random unitary displacement u and
update positions to qn ! q0 ¼ qn þ dxAu. This is the initial
deformation. A typical value of dxA is 0.1–0.2 Å.



Direct Exchange

Fig. 4. Diffusion pathways for a Al atom on a (100) surface. (a) Direct mechanism:
hop over the surface atoms with an activation barrier of 0.37 eV; (b) Exchange
mechanisms: Feibelman’s exchange pathway with an activation barrier of 0.23 eV
(energies from Ref. [1]).
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3. We apply a few minimization steps (typically one to three)
in the hyperplane perpendicular to the initial deformation
in order to avoid collisions, but not enough to fully relax
the system. For this, we calculate forces and separate them
into perpendicular and parallel components F ¼ F? þ Fk.
Then, we relax q0 using only the F? component that can
be obtained by using the scalar product as F? ¼ F � ðF � uÞu.

4. At the end of each iteration, we compute the lowest eigen-
value k1 of the Hessian matrix using the Lanczos algorithm
[31]. If k1 > dc , a new deformation iteration is done, i.e., the
cycle with the previous steps is repeated until k1 < dc

(where dc is a negative certain threshold value set to for
example dc ¼ �1 eV/Å), to ensure that the system is really
outside the harmonic well, or until the maximum number
of iterations is reached, in which case we start a new search.

5. The configuration is now out of the harmonic well and con-
vergence to a nearby saddle point is possible. For that, we
move the system along the direction of the lowest normal-
ized eigenvector, v1, i.e., q0 ! q00 ¼ q0 � dxn

av1, away from
the initial minimum. According to the method proposed
by Cancès et al. [32] the quantity, dxn

a , needs to become
smaller as the saddle point is approached, therefore, it is

set to dxn
a ¼ min 2dxA;

jFkj
max jk1 j;0:5ð Þ

� �
.

6. As in the previous step (3), after each push along the direc-
tion of negative curvature q00 must be relaxed, but now in
the hyperplane orthogonal to v1. Therefore, we minimize
the energy of the system using F? ¼ F � ðF � v1Þv1. This
step is repeated until de conditions jF?j þ jFkj < dF and
k1 < 0 be met. If k1 > 0, indicating that there is no longer
a negative eigenvalue, the activation is stopped and a
new event search is attempted.

7. When the convergence condition is met, we consider that
the system has reached a first-order saddle point, qsad. As
a final step the system must be relaxed to the new local
minimum qnþ1. To do that, we push the configuration
slightly over the saddle point, qsad ! q0 ¼ qsad þ dxbv1, and
minimize the total energy. Here, dxb ¼ �0:1, is the fraction
of distance (initial-saddle) that the system is pushed over
the saddle point (its sign must be chosen according to the
doc product, ðqn � qsadÞ � v1, to avoid going back to the
previous minimum). The relaxation is finished when the
magnitude of the 3N-dimensional force be jFj < 10�4 eV/Å.

A few general points should be noted:

1. Since events taking place in materials at low temperature
are local in nature, it is more efficient to apply an initial
local random deformation on an atom and its surroundings.
This allows to diversify more rapidly the set of generated
events without affecting the nature of those that are found.

2. Since we stop the activation when the lowest eigenvalue
becomes positive, we require that this eigenvalue falls
below a negative threshold before considering that the sys-
tem has left its original harmonic basin. This limits the
probabilities that the negative eigenvalue vanish in the first
iterations of the activation phase.

3. The Lanczos algorithm is a stable algorithm that provides a
reliable lowest eigenvalue and corresponding eigenvector
with only 12 to 15 force evaluations irrespective of the
dimensional of the system studied. As such, Lanzcos is par-
ticularly efficient for large systems.

Because ART nouveau typically converges to a saddle point
within a few hundred force evaluations, it can be used with ab ini-
tio codes [24,33,34] as well as with empirical potentials [35–38].

ART nouveau has been applied as a standalone technique for
sampling energy landscapes as well as for finding minimum-energy
pathways of disordered systems, materials and biological systems.
For sampling energy landscapes, a large number of searches are
launched from each local energy minimum of interest in order to
reconstruct the energy landscape structure. Such an approach was
used, for example, to study the energy landscape of crystalline
materials with defects [31,33,34] as well as that of amorphous sili-
con and glasses [36,38–42]. Coupled with a Metropolis accept/reject
criterion based on the energy-difference between the final and the
initial minimum in an event, ART nouveau was also used extensively
to generate protein folding and aggregation trajectories [43–47] and
identify relaxation pathways in complex materials [35,37,48,49].

2.4. Getting the rates: transition state theory

Now that we know how to generate minimum-energy path-
ways connecting a local minimum to nearby ones, KMC requires
that we evaluate the transition rate Ri!j associated with each of
these events.

In transition state theory (TST), the escape rate from a basin is
defined as the equilibrium flux through a dividing surface between
two basins. Basins can be single minima, such as in the systems we
study here, or much more complex structures, such as those dis-
cussed in Ref. [50], for example.

Defining DW as the free energy difference between the bottom
of the basin and the dividing surface, the TST rate is given by

Ri!j ¼ jme�
DW
kBT ; ð5Þ

where T is temperature, kB the Boltzmann constant, m the attempt
frequency, i.e., the frequency at which the system moves in the
direction of the dividing surface and j is the transmission coeffi-
cient, the probability for a system to cross into a new basin once
it has reached the dividing surface.

More formally, the attempt frequency is defined as

m ¼
ffiffiffiffiffiffiffiffiffiffiffi
kBT

2pm

r Z
well

e� WðxÞ�WðxmÞð Þ=kBT dx
� ��1

; ð6Þ

with WðxÞ, the potential of mean-force,

WðxÞ ¼
Z x

xm

hf ðkÞik¼y dy; ð7Þ

representing the averaged force on the reaction coordinate k mea-
sured along the reaction pathway, while the transmission coefficient,

j ¼ hH½xðtÞ � xb� �H½xð�tÞ � xb�i; ð8Þ

is the thermodynamical average over pathways for times t much
larger than vibrational times (H, here, is the Heaviside function,



Fig. 5. To discretize the configuration k-ART uses a topological description. (a) We
select an atom of the configuration and its neighborhood. (b) Bonds are drawn
between these atoms resulting in (c) a connectivity graph which is sent (d) through
NAUTY, which returns (e) the automorphic class id of the graph as well as the
correspondence between its vertices and those of a reference graph. Here, the
central atom is a two-coordinated oxygen in a c-Si matrix.
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xb defines the boundary of the local minimum and xðtÞ, the position
along trajectory).

For simple energy basins, with a single energy minimum, it is
possible to simplify the equation. First, we can separate the free
energy difference in terms of entropy and configurational energy:

Ri!j ¼ C0e�DE=kBT ; ð9Þ

where DE ¼ Esaddle � Emin, the energy difference between the saddle
point and local minimum and

C0 ¼ jmeDS=kB ; ð10Þ

with the entropy difference DS also computed between the local
minimum and the dividing surface. The entropy difference can be
computed either through thermodynamic integration or the
quasi-harmonic approximation [51]. In bulk materials, however, it
is generally considered that the entropy varies relatively little
between events [39,52]. Similarly, since saddle points tend to be
relatively simple, the transmission coefficient j is close to 0.5 and
the attempt frequency is defined by typical phonon frequencies.

Most KMC simulations, therefore, use a fixed prefactor C0 that
is set to 1012 to 1013 Hz [6,8,53]. The rate used here and in most
KMC applications is therefore simply:

Ri!j ¼ C0e�DE=kBT ; ð11Þ

with C0 ¼ 1013 Hz.
While this approximation, which we follow, is generally reason-

able, recent calculations suggest that this might not always be the
case, especially in glassy systems [41]. More work remains to be
done to establish the generality of this finding in view of other
results supporting a fairly constant and harmonic prefactor far
away from melting.

2.5. Classifying the events: a topological approach

The two previous steps – generating events and computing
associated rates – are sufficient for implementing an off-lattice
kinetic Monte Carlo approach. This is the algorithm already pro-
posed more than 10 years ago by Henkelman and Jónsson [1],
and used for a number of problems since then [6,54].

While the method does work, there is something apparently
wasteful by not attempting to reuse the events found earlier for
further simulations. When there are only a few relevant barriers,
this aspect is not fundamentally an issue. However, for large and
complex systems, the burden to start from scratch at every step
might become heavy. Especially, since it remains necessary to
develop criteria to ensure that degenerate events are not included
in the event list. A part of the required classification work is there-
fore already accomplished, but simply thrown away. Starting from
this algorithm, the net computational overhead for cataloging
becomes almost negligible once an efficient method is identified.

Distinguishing events is not quite enough, however, to generate
a catalog, especially when there are no restrictions on atomic posi-
tions. In order to be useful, a catalog much propose reusable
events, i.e. events that can be assigned to a discretized space. The
discretization can take many forms. Various KMC algorithms have
proposed different ways to partially handle off-lattice positions
through geometrical analysis typically done with respect to a crys-
talline order [5,6].

k-ART proposes a unique topological approach to event classifi-
cation that completely does away with crystalline positions, allow-
ing the algorithm to work as easily with ordered and disordered
configurations. This lifts the limitations found in other approaches,
which are associated with the use of a crystalline reference state
for classifying all events.
The local topological environment surrounding each atom is
characterized independently. For each atom, a surrounding region
is selected, that typically involves between 40 and 60 atoms, and a
graph is constructed by linking nearby atoms, generally using a
cut-off set between the first and second-neighbor distance. This
classification is used to identify both minima and transition states.
It is based on the hypothesis that structures belonging to the same
automorphic group share the same list of events, topologically
speaking (see Fig. 5).

This hypothesis is equivalent to requesting that (1) the embed-
ding of the local graph in a spatial environment is unique and (2)
the set of local minimum geometries mapping to the same auto-
morphic group is directly related to the sets of transition states
surrounding this minimum. The first requirement is much less
exacting that it appears at first: k-ART is applicable in a regime
dominated by activated events and slow dynamics, which implies
a temperature well below melting, and defined by specific force-
fields. This regime imposes that states are characterized by well-
defined metastable local minima. It also means that it is possible
to move from one local minimum geometry to any other associated
with the same topology by simply deforming the boundary condi-
tions without ever passing by a state that does not belong to this
group.

If this is the case, one can expect that the same will hold for the
environment surrounding the local minimum including the transi-
tion state. With this condition, we obtain a unique correspondence
between the topological classification and the geometry, allowing
us to construct a valid and efficient catalog.

As it turns out, testing this hypothesis is straightforward: it
suffices to ascertain, for each event, whether or not the saddle
points predicted by the catalog for a given local minimum can
be reconstructed. Since saddle points are, by definition, metasta-
ble states, their existence is sufficient to demonstrate the cata-
log’s validity. As discussed in more details below, as a general
rule we have found that this correspondence applies to a wide
range of systems, both covalent and metallic in bulk, defective,
and surface environments. Of course, it would still be possible
for new saddles points to arise in a given topology without affect-
ing those already in the catalog. We sometimes observe this in
disordered systems with the appearance of very low saddle points
(0.01 eV or so), as the geometry is changed without affecting the
topology. However, the appearance of a significant saddle point
will affect the surrounding energy landscape and move already
existing saddlepoints around.
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3. Selected applications

The full k-ART was applied to a number of systems ranging from
crystalline metals to amorphous semiconductors. A simplified ver-
sion of the algorithm, implemented by Jiang et al. was also recently
used to study the stability and mobility of carbon tri-interstitial
clusters in cubic SiC [55]. To help better understand the method,
we review here a few selected recent applications.
3.1. Di-vacancy diffusion: the importance of elastic effects

Let us first look at an apparently simple problem: the diffusion
of a di-vacancy in Stillinger–Weber c-Si [56]. We consider here a
510-atom box with periodic boundary conditions. We start from
two vacancies positioned at random in the simulation box and
relaxed at T ¼ 0 and launched a 5000-step k-ART simulation at
500 K with a prefactor of C0 = 1013 Hz.

Since the elastic interaction is important, the aggregation into
the divacancy ground state occurs in less than 30 ns, leading to a
structure with a formation of EF2Va ¼ 4:59 eV; 0:71 eV below the
two isolated vacancies and in agreement with literature [57].

If we consider only the topologies sampled from the ground
state (2Va), we identify five characteristic topologies and 19 char-
acteristic events: 2Va to 2Ve, corresponding to vacancy position at
the first to fifth nearest-neighbor positions. The top panel of Fig. 6
shows the relative energy, as measured from the ground state, and
the occurence probability. We note, in particular, that 2Va, 2Vb and
2Vc are the most probable states.

The bottom panel shows the transition energies separating the
most common of these states. We note, in particular, that the tran-
sition state connect 2Va to 2Vb (vacancies in second neighbor posi-
tion) and 2Vc (in third neighbor position) is degenerate. A closer
inspection reveals that the degeneracy is complete: the saddle con-
necting 2Va to 2Vb is the same, within 0.01 Å and 0.01 eV, to that
connecting 2Va to 2Vc. This degenerate state dominate completely
the divacancy kinetics, leading to two-rate diffusion: as the diva-
cancies hop between 2Vb and 2Vc, with a barrier of 0.24 eV
(0.44 eV from 2Vc to 2Vb), these defects move rapidly across the
box to be trapped only when the two vacancies move into the
nearest-neighbor position, which is isolated by a 1 eV barrier.

Detailed analysis of vacancy and interstitial Si systems is under-
way, which supports the conclusion of a recent characterization of
interstitial diffusion in Fe that even for self-defects, the richness of
the energy landscape is much larger than was expected only a few
years ago [31].
From 2Vb to 
2Va or 2Vc

2Va

Fig. 6. Histogram of shifted energy and activation barrier found in a 5
Already, the fact that k-ART can automatically identify this
complex saddle, which had not been observed previously, demon-
strates both the need for automated sampling methods that can go
beyond the researcher’s intuition into the kinetic pathways as,
even for this simple system, unexpected moves take place, and
the necessity of including correctly elastic effects, essential for
trapping the vacancies.

3.2. Relaxation of ion-bombarded Si

k-ART is not limited to simple materials or small cells. Using
local force calculations coupled with global energy relaxation and
the topological classification, it is possible to simulate the relaxa-
tion of ion-implanted crystal over experimentally time scales.

Ion-implantation of c-Si plays an important role in micro-elec-
tronic device manufacturing and constitutes a model problem to
understand the order–disorder transition. In the low-keV range,
initial damage accumulation in such a system is well described
by MD, as well as by the binary collision approximation. The initial
stages of damage recovery during annealing are well characterized
by MD for timescales reaching a few ns. On-lattice simulations of
the long-time evolution of the defects produced by ion bombard-
ment, based on the local density of bond-defects (i.e. the IV-pair
model [58,59]), accurately predict the stability of amorphous
regions in the material. However, there are significant discrepan-
cies between the kinetics predicted by the model and the results
of nanocalorimetry experiments. Thus, fully atomistic long-time
simulations capable of handling off-lattice positions and elastic
effects were necessary to capture the mechanisms leading to dam-
age recovery, which motivated the use of k-ART [11].

Simulation boxes were prepared by running MD calculations of
3 keV self-implantations in c-Si at 300 K, using the Stillinger–
Weber [60] potential as described in [61]. Three such MDs were
performed for 1–10 ns. These MD-generated configurations were
used as starting points for k-ART. Three k-ART runs were per-
formed for each MD-generated initial configuration, for a total of
nine simulations.

The results of these runs is shown in Fig. 7. The potential energy
of the system decreases approximately proportionally to the loga-
rithm of time. The interplay of the point defects and small defect
complexes involved in this problem thus led to an ubiquitous
relaxation behavior in disordered materials: logarithmic relaxa-
tion. These isothermal annealing simulations were shown to be
in very good agreement with nanocalorimetric experiments, which
suggests the validity of the mechanisms involved in the k-ART
simulations.
From 2Va to 
2Vb or 2Vc

From 2Vc to 
2Va or 2Vb

From 2Vd

2Vc 2Vb

2Vd

2Ve

000-step run at 500 K starting from the divacancy ground state.
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Fig. 7. Evolution of a 27 000-atom Si box after the implantation of a 3 keV Si atom.
After a first 1–10 ns MD simulation, we plot the energy evolution simulated with k-
ART for a number of independent runs on three different samples (blue, red and
green). Also shown: two snapshots representing the defective atoms at the onset of
the simulation and after about 1 s of atomistic simulation. The data was first report
in Ref. [11]. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 8. A single vacancy created by removing an atom from a perfectly coordinated
amorphous silicon model. In red is shown the atoms that are undercoordated. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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Damage recovery was associated to the aggregation, reconfigu-
ration and annihilation of self-interstitial atoms and vacancies
[11]. A very broad distribution of activation barriers were executed
during each time-frame, with no correlation between forward and
backward barriers. Relaxation was rate-limited by the presence of
high-energy barriers in all time-frames, which usually did not
directly lead to damage recovery, but rather unlocked the system,
which would otherwise have been trapped in a region of the poten-
tial energy landscape with no accessible relaxation events. This
novel description of relaxation, made possible only with the help
of second-long simulations highly defective systems, dubbed
replenish and relax, was found to apply also, for example, to fully
disordered amorphous materials.

3.3. Iron: application to metallic environment

k-ART was also applied to study vacancy aggregation in Fe [10].
To avoid duplication, we refer the reader to another paper pub-
lished in this special issue of Computational Materials Science by
Bèland et al. who compare a number of accelerated methods,
including k-ART using this system as a model reference.

3.4. Amorphous silicon: a long-time simulation of a fully disordered
system

Simulating the structural evolution of disordered solids repre-
sents a unique challenge for off-lattice KMC methods. Unlike crys-
talline systems where there is a reference crystalline geometry that
could be used to simplify cataloging, disordered systems are
entirely composed of ‘‘defective configurations’’ so that each
atom’s environment is unique.

Because of this complexity, k-ART is currently the only KMC-
based method that can be applied to amorphous and disordered
systems. Even though, because of structural complexity, construct-
ing an event catalog for a disordered solid is much more costly in
terms of computational resources than for a defective crystal, k-
ART is perfectly capable of handling these systems correctly and
can even reach simulation timescales on the order of a second at
room temperature.
In a recent study [12], we used k-ART to study the stability of
vacancy-like defects in amorphous silicon (a-Si) at 300 K. For the
last 30 years, a number of experimental results have suggested
that vacancy-like defects exist and play an important role in the
structural relaxation of a-Si [62–68]. Unlike in c-Si, however, the
disordered nature of a-Si makes it possible for single isolated coor-
dination defect (dangling or floating bond) to exist.

In view of this additional richness in local defect, the debate has
long ported on the presence and stability of bond versus point
defects: do vacancy-like defects (four correlated dangling bonds)
dominate in a-Si, for energetic reasons, or does the larger entropic
contribution of isolated bond defects favor the latter? Unfortu-
nately, most molecular simulation studies done on the subject
were limited to timescales of less than one ns [69–73], much too
short to provide a complete picture of the phenomenon at low
temperatures.

Here we used the unique capabilities of k-ART to generate
atomistic trajectories over long time scales. Models containing a
single vacancy were created by removing an atom from an initial
well-relaxed a-Si model. One thousand models were made by
removing sequentially every atom of the initial 1000 atom model.
Vacancy-like defects are defined as a void surrounded by a cluster
of four dangling bonds (missing bond of an under-coordinated
atom) as shown in Fig. 8. These simulations use a modified version
of the Stillinger–Weber potential optimized to correctly describe a-
Si [74]. Of the initial vacancies, 547 are unstable and disappear
during the energy minimization. k-ART simulations were launched
on the remaining 453 models and the diffusion and lifetime of
these vacancy-like defects were studied. Since the initial configura-
tions are close to one another (only 40–50 atoms are displaced
from the initial unperturbed model), the event catalog generated
from one of the configuration was reused to speed up the simula-
tions the remaining models.

In Fig. 9, we see the distribution vacancy lifetimes for the 447
models that lost their vacancy through an activated event while
the inset shows the activated barrier of the annihilation event as
a function of vacancy lifetime. While most of the vacancies are
annihilated rapidly (only 43 remain after 1 ls), it is important to
note that 6 vacancies are still present after 0.1 s of simulated time
(0.6% of the original 1000 created) when the simulations are
stopped. The wide distribution of activation barriers for the
annihilation events seen in the inset shows that there is no strong
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correlation between the activation barrier of the annihilation event
and the lifetime of the vacancy. Rather, the longer lifetimes are
often caused by the need of the system to proceed with a energet-
ically costly local rearrangement around the vacancy site before
the final annihilation step.

In conclusion, a dangling or floating bond (over-coordinated
atom) is still present around the vacancy site. Either because the
annihilation step did not remove all of the dangling bonds or
because new coordination defects were created during the annihi-
lation. Finally, full diffusion of the vacancies as a cluster of four
dangling bond was not seen for more than one step. In all cases,
the cluster was partially annihilated soon after it moved.

These results demonstrates the strength of k-ART in treating
complex materials. The limiting factor, here, is the number of
low-energy barriers. This is why the selected initial state was
well-relaxed, allowing the simulation to reach long time scales.
The reuse of the event catalog was also crucial to be able to launch
1000 simulations with time scales of up to 1 s. The catalog is also
useful during the simulation, as the system explores basins and
flickers of different energy levels. It is also useful to identify which
states should be recomputed and which are still valid, saving also
considerable time, although less, clearly, than in a simpler environ-
ment. More work remains to be done to fully characterize the help
provided by the catalog for such complex systems.
Fig. 10. Cartoon representation of an atom diffusion on a surface of a FCC lattice.
Jumps indicated by the arrow share the same topological index. To distinguish
them, it is therefore necessary to add a displacement vector component.
4. Details of implementation

Now that we have shown what k-ART can do, it is useful to go
back to the algorithm and look at its implementation in more detail
(see Fig. 1).

4.1. Generating events

For cataloging purposes, each generated event is assigned to the
topology of the atom that moves most from the initial configura-
tion to the saddle point. While this is a somewhat arbitrary
assignation, it is uniquely defined, limiting the number of degener-
ate events stored in the catalog.

4.2. Constructing the catalog

The current implementation of the topological classification is
straightforward. First, the discretization of the events and the
generation of the key that will be used in the catalog follows three
steps:

1. Select all atoms within a sphere of radius Rc around the
central atom; we typically use a 6–7 Å cut-off.

2. Generate a connectivity list using a cut-off distance, rc , that
is generally between first and second neighbor distance.

3. Send the graph to NAUTY [75] to obtain a unique key associ-
ated with the automorphic group it belongs to.

These steps are applied anytime a topology label is sought. The
topology of each atom in the initial configuration is first deter-
mined. A preset number of ART nouveau event searches, typically
50, is then launched on each topology, selected at random between
the atoms belonging to the same class.

For alloys involving atoms of different sizes, it is preferable to
define the size of the graph by the number of vertices, i.e. the num-
ber of atoms included in the local neighborhood. This ensures that
the amount of information used for the topological classification
does not depend on the local chemistry. Since such an approach
requires computing and ordering distances between neighboring
atoms, it is best to limit its application to cases where it is
essential.

Once an event is generated, a topology label is obtained for the
saddle point and the final energy minimum, and the event is com-
pared with the current catalog to establish whether this is a new
event or not. If not, the event is discarded and a new search is
launched. If so, a unique event key is generated by hashing the
topology index of the initial, saddle and final states and it is added
to the generic event catalog. This phase is repeated until a mini-
mum number of event searches has been launched on every iden-
tified topology.

During the catalog building, it is necessary to handle correctly
the symmetries of the system. In crystalline environment, many
directions are equivalent. The topological analysis does not distin-
guish, for example, between an atom jumping to the right, left, top
or bottom on a face-centered cubic (FCC) lattice (see Fig. 10). These
three directions, however, must be included in the catalog to
ensure the right diffusion mechanisms. To do so, we keep track
of the real-space configuration-specific atomic displacement from
the initial state to the saddle point.

If a second event on the same atom is found with the same
topological index and displacement but with a different direction
of motion, we identify the move as belonging to this class of events
and we generate two events, with the same topology but a differ-
ent motion. To ensure that sampling catches all the symmetries,
we then add a fixed number of searches to the standard value
and continue the standard event searches. This automated
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approach has the benefit of not forcing the preliminary identifica-
tion of local symmetries. It is sturdy enough, however, to have pro-
vided the right answers both with ion-implanted Si and vacancy
and carbon diffusion in Fe.

This approach respects the overall philosophy of k-ART, which
attempts to be as automated as possible in order to minimize the
information that must be provided at the onset of the simulation
and, therefore, biases that could be introduced.

4.2.1. Storing events
As discussed above, each event is given a unique label obtained

by hashing the topological ID of the initial, saddle and final states.
To avoid clashes, labels are stored in a large table with a predefined
size. When hash collisions occurs, the label number is incremented
by one until an empty spot is found.

Avoiding hash tag clashes does not affect the fundamentals of
the algorithm since events are linked directly to the initial topol-
ogy. Nevertheless, it is preferable to limit clashes as they require
a number of steps that must be repeated every time we need to
check whether a newly generated event is already in the catalog.
Since the number of elements can grow significantly, particularly
for alloys and disordered systems – for the simulation on a-Si,
for example, this table include between 300.000 and 350.000 ele-
ments – it is useful to set this table to as large a size as possible.

4.3. Reconstructing events: the specific events

Once event searches are finished both for new initial and for
recurring topologies, we can construct the event table for the cur-
rent configuration. First, all generic events associated with the
active topologies are copied. Then a first rough rate is computed.
This rate serves to determine which events should be specifically
reconstructed and fully relaxed for current configurations.

Constructing a specific event from a generic one is a fundamen-
tal part of k-ART algorithm.

1. A correspondence table is generated using the topological
transformations provided by NAUTY, that links all topological
graphs to a unique reference structure for each automor-
phic group. This information identifies the relation
between the atom list associated with the generic event
and the specific representation for a local environment in
its current conformation.

2. The saddle-point geometry is reconstructed for the local
environment based on the knowledge of the associated ini-
tial minimum as well as the reference (generic) state initial
minimum and saddle point geometries.

3. ART nouveau activation steps are then applied to converge
the reconstructed geometry to the exact saddle point,
allowing all the atoms in the box to relax to their optimal
position.

4.4. Interfacing with LAMMPS

The k-ART package is forcefield-independent. It can be applied
to any system as long as the force used are continuous and deriv-
able, so that the Hessian is uniquely defined. To simplify its use, k-
ART is interfaced to the LAMMPS library [76,77], giving access to a
large array of empirical forcefields and parameters. With this inter-
face, it is relatively straightforward to port any additional forcefield
to k-ART.

Beyond the systems discussed here, we have tested k-ART with
LAMMPS using Stillinger–Weber and Tersoff potentials for Si, EAM
and MEAM potentials for pure and alloyed metals and ReaxFF for
silica mixtures. In each case, we could reproduce MD results in
the short-time regime.
While formally, k-ART is not limited to empirical descriptions
and can also be used with more accurate force calculations, the
computation cost of the method is still prohibitive for most appli-
cations and the current package has not been tested with this
approximation level for interactions.

4.5. Accelerating the simulation

As with any KMC approach, k-ART involves considerable data
management and calculations. If, for simple systems, the algorithm
as described above offers a clear acceleration with respect to MD
for a simple systems, any computational gain is welcome in order
to study larger and more complex systems, such as those presented
in the previous section.

4.5.1. Handling flickers: the bac-MRM method
Flickers can cause significant slowing down in the time scale

sampled using KMC approaches: since the computational costs
associated with generating a step is independent of the barrier
height, low-energy barriers can easily critically slow down any
KMC method. To avoid this well-known limitation, it is necessary
to handle these low-barrier events with a different algorithm. For
k-ART, we have developed the basin-autoconstructing Mean Rate
Method (bac-MRM) [9] which is a basin-based acceleration scheme
build upon the Mean-Rate Method introduced by Puchala et al.
[78].

A flickering state is defined as a pair of local minima with sim-
ilar energy and connected by a barrier below a given energy
threshold. A basin represents a set of connected flickerings states.

The bac-MRM computes the average escape time from this
basin to nearby states, taking fully into account the energy of each
flickering state and the exact barriers for leaving the basin. To com-
pute the escape probability to a state x, we must first determine
the transition probability matrix T given by:

Tji ¼
Ri!jP
kRi!k

¼ s1
i Ri!j: ð12Þ

Here, Ri!j is the rate going from basin state i to basin state j and is
normalized by the sum over all escape rates which corresponds to
s1

i , the mean residence time in state i each time it is visited.
Defining HiðtÞ as the occupation probability of a state i at time t,

we can compute the in-basin occupation probability vector as

Hsum ¼
X1
m¼0

TmHð0Þ ¼ ð1� TÞ�1Hð0Þ; ð13Þ

where the components of the initial vector, Hð0Þ, are given by
Hið0Þ ¼ dis, with s, the starting state.

The mean residence time in basin state i before leaving the
basin is therefore simply:

si ¼ s1
i H

sum
i : ð14Þ

That is all we need to obtain the escape rates from the basin i,

hRi!ji ¼
siP
ksk

Ri!j; ð15Þ

with k summing over all basin states. These rates are then inserted
into the full rate matrix on a par with all other activated events to
determine the next time step, which allows the KMC algorithm to
take these basins directly into account, ensuring that the correct
kinetics is followed.

In summary, MRM separates the trajectory into basin states and
states outside the basing to which system can access, and acceler-
ates the simulation by averaging over all possible jumps between
basin states, yielding the correct probability to exit a basin to a cer-
tain absorbing state.
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4.5.2. Event reusing
Event reusing in k-ART takes place at two levels with the goal of

minimizing the cost of each KMC step: First, the cataloging of gen-
eric events. Second, the on-the-fly short-term storing of specific
events.

Generic events are associated with the computed specific topol-
ogy centered on the atom that move the most between the initial
and the saddle states. For each local-minimum topology, a list of
events is stored along with an example of geometry at the initial
minimum, saddle state and final minimum, accompanied by the
associated topologies, as well as the forward and backward activa-
tion energy and the cut-off used. This last number is generally con-
stant except when it is necessary to lift a degeneracy in the
correspondence between geometry and topology.

Once generated, the catalog can be reused as a starting point
for other simulations on the same or related system, accelerating
the overall efficiency of the method. For example, the catalog gen-
erated for defect diffusion in c-Fe can be used as a starting point
for studying dislocation diffusion or C diffusion in Fe. This time
saving feature was essential for the study of vacancy diffusion
in amorphous silicon (a-Si) [12]: generating a event catalog for
a a-Si 1000-atom cell required about 2000 h. Reusing the same
initial catalog for the 1000 different configurations studies saved
about 2 000 000 h of calculations and made the project
manageable.

During the simulation, the lowest-energy events are fully
reconstructed and converged at the saddle point to correctly
include all elastic effects in the kinetics. While the number of
events depends on the system studied, this step generally involves
refining between ten and one hundred events to their exact transi-
tion state using ART nouveau. It is therefore useful to store the
reconstructed specific events when moving to the next step and
to reuse the transition states as initial configurations for a new
convergence, when appropriate.

Such event reusing can cut the computational time by 20–80%
depending on the system studied and the distribution of low-
energy barrier events with very low overhead.

4.5.3. Event and force parallelization
In order to take advantage of modern computer architecture,

most actions in k-ART are regrouped and managed through a list
of tasks to accomplish. At the beginning of each step, a list of event
searches is first established on the master node. These are then dis-
patched to the worker nodes, that return with either a successful
event or a failure; the master node analyses these returns indepen-
dently of each other and can therefore send a new task without
waiting for all nodes to be finished. A similar organization is
applied when constructing refining specific events. In this case,
again, a list is first constructed and attributed in sequence to avail-
able nodes.

Such an approach allows the use of a flexible number of proces-
sors, simplifying submissions and offering a significant gain in
human time that depends on the complexity of the system studied
as well as on the simulation stage. For example, the initial event
catalog used for following energy relaxation in a 1000-atom a-Si
box is generated in about 10 h using 200 cores. Since, during the
k-ART simulation, only a small number of atoms change their envi-
ronment, 10–50 cores, depending on the system, is generally opti-
mal to ensure close to 100% usage. For example, the optimal
number of cores for a few defects in c-Si is about 10 while it is
between 10 and 20 for the 50-vacancy Fe system.

It is also possible to increase efficiency by also parallelizing the
forces, taking advantage of LAMMPS’s parallelization, for example
[76]. We are currently testing our implementation of this multiple
level parallelization which should be available in the distributed
package.
4.5.4. Local forces
Contrary to MD, where events can take place in parallel, and the

time increases linearly with the number of steps, irrespective of
system size, the sequential nature of KMC means that the average
time step decreases as 1=N, where N is the number of atoms, for a
homogeneous system and, therefore, the number of steps needed
to achieve a constant time scale increases like N.

With, MD, however, the force most be computed on all atoms at
every step, an OðNÞ operation. This is not the case for k-ART. Since
activated events are local in nature, it is possible, when using
empirical potentials, to restrict the force calculations to the atoms
involved in the event and their affected neighborhood, for an Oð1Þ
computational cost.

Therefore, when using a local force calculations, the overall
computational costs for reaching a given timescale goes like OðNÞ
for k-ART, the same as for MD.

We have used this approach for simulations of a 27 000-atom of
ion-implanted Si adding a full OðNÞ force calculation for the final
convergence of specific events and accepted energy minima, to
ensure that long-range elastic effects are fully included [11]. As
shown in Ref. [79], for the system studied, this raised the compu-
tation cost to OðN0:4Þ, slightly more than MD but still well below
1 (see Fig. 11).
4.6. Rigid lattice

To isolate effects stemming from long-range interactions from
defects, we modified k-ART to intentionally suppress any influence
from the atomic structure outside the local environment used for
topological classification. This is achieved by embedding the atoms
inside the topological classification sphere with radius Rc in a
defect-free ‘‘generic’’ bulk crystal. This so-called generic embedding
(GE) [80] is obviously not equivalent to skipping the specific event
refinement described in Section 4.3: In standard k-ART, generic
events are searched and found in a certain arrangement of all
atoms and may thus include a bias introduced by long-range
interactions.

The GE procedure corresponds to simulating defects in a rigid
lattice, as no elastic deformation can propagate outside the topol-
ogy cutoff. Inside the cutoff sphere, off-lattice positions are still
permitted. This makes generic embedding simulations much more
sophisticated than standard KMC codes which usually require on-
lattice positions throughout the system.

The events obtained in this fashion are truly ‘‘generic’’, as the
same barrier energy can be used for all representations of a
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topology environment. Consequently, these events are not refined
to specific events, which significantly reduces computational
effort. The overhead for creating the embedding environment is
negligible compared to the cost of searching for events. This speeds
up GE simulations compared to their full counterparts, particularly
once a system has explored most of the topologies, and a signifi-
cant fraction of computational effort is devoted to refining the
already known events.

It should be noted that GE requires the system to show some
resemblance to the bulk crystal, for example by having a significant
fraction of atoms identifying as bulk atoms through their topology
key. It is thus most useful to study elastic effects on the evolution
of defects in a crystalline system.

Generic embedding has been successfully applied to vacancy
agglomeration in bcc iron [80], where it was shown that long-
range elastic interactions affect the kinetics in this system primar-
ily on intermediate time scales (milliseconds). There, these interac-
tions seem to trigger quick cascades of energy release, which
happens significantly slower if long-range effects are suppressed.
On longer time scales however, both kinds of simulations lead to
similar final states in this comparatively compact system. In more
open (e.g. covalently bound) materials, elastic interactions decay
less rapidly with distance and larger effects are to be expected.
5. Discussion: strengths and limitations of k-ART

k-ART is not the only algorithm attempting to lift these restric-
tions. Henkelman and Jónsson introduced an off-lattice KMC
approach with on-the-fly identification of events in 2001 [1]. With-
out catalog, this method was applied only to relatively simple sys-
tems but already demonstrated the need to handle correctly elastic
effects. More recently, a number of groups have proposed
approaches to lift some limitations of KMC [6,81].

Given the number of accelerate methods that have been pro-
posed recently, many of which are discussed in this special issue,
it is useful to establish the strengths and limitations of k-ART.
5.1. Local versus global moves

As a general rule, all events generated with ART nouveau,
including the activation towards a new saddle point, are defined
in the full 3N-dimension space of the configuration box. Events
can therefore involve as few or as many atoms as necessary and,
for energy minima and saddle points, the elastic effects are exactly
taken into account (within, of course, the limits of the potential
used). While the initial random deformation is generally applied
to a few atoms, in order to facilitate the sampling of a large number
of events, the whole system can respond and the final event can
involve any atom in the system, preventing biases that could limit
the generation of specific event classes.

In practice, activated events tend to see only a few atoms
change their bonding environment, as should be expected in the
temperature regime where KMC approximations are valid: well
below melting and in systems for which barriers are high with
respect to kBT. However, long-range elastic deformation are
observed and their effects are directly measurable in the observe
barrier heights for same events in varying mid- and long-range
environments. However, these mid- and long-range effects are par-
ticular important at the transition state, since, by construction, this
point implies a less favorable state, with larger elastic deforma-
tions than at the minimum.

Even when using local forces during the activation, in order to
accelerate the algorithm, we make sure that the final relaxation
step, once converged to the saddle point or to a new minimum,
is performed on the full 3N-coordinate energy landscape.
While the kinetic ART does not define or restrict event size, it is
important to ensure that the size of the region defining the topo-
logical label is sufficiently big so that it contains all atoms changing
their neighboring environment in the last events otherwise, the
event reconstruction will not work properly. Since, in general, less
than 10 atoms change their coordination during events for the sys-
tems presented above, a sphere containing 50–60 atoms is com-
pletely sufficient to ensure that there is no even indirect
limitation to event sizes within the algorithm.

This also means that the usefulness of the topological classifica-
tion is limited to cases when events are relatively local in nature. In
highly strained systems, with avalanche-like motion, involving
possible hundreds of atoms or more, the approach we use here is
not applicable. In that case, however, it is still possible to perform
the simulation, as long as a new catalog is constructed after such
large scale event.

5.2. Ensuring detailed balance

One of the advantages of using a catalog is that it is possible to
enforce strict detailed balance by adding all events to the catalog
both in forward and reverse direction. While it is not possible to
demonstrate that the event list is complete, this simple step, cou-
pled with full relaxation of relevant events, is sufficient to make
sure that (i) every trajectory is fully reversible and (ii) detailed bal-
ance is respected locally for each event even when also using the
bac-MRM flicker handling algorithm.

We emphasize that local detailed balance cannot be assured in
the absence of a catalog as only a complete sampling of events
would guarantee that all reversible pathways are found.

5.3. Ensuring completeness

While detailed balance is strictly enforced in kinetic ART, it is
not possible to guarantee the completeness of the catalog. Indeed,
saddlepoint search method available today are not systematic so
that completeness is never assured. Completeness is also missing
from most lattice-based KMC simulations. This means that impor-
tant pathways can be missed and it is impossible to account for
these possible systematic errors when evaluating kinetic pathways
and timescales.

In spite of this formal limitation, extensive searches on well-
known (and relatively simple) systems have shown that with
sufficient sampling, it is possible to recover all important and
kinetically relevant mechanisms [23,31]. Moreover, these methods
also provide a much richer event catalog than lattice-based
simulation, increasing the accuracy of the results. k-ART and
similar methods represent therefore a significant step forward in
addition to accessing a new range of physical phenomena.

Yet, as long as it is not possible to evaluate and quantify the cat-
alog’s completeness, a correct error measure remains impossible
and efforts must be continued to address this fundamental issue.

5.4. Topological classification

An important element of the applicability of kinetic ART to com-
plex materials is the use of a topological classification for catalog-
ing. In order to be effective, there must be a close relationship
between local geometry and local topology. In simple terms, this
means that the topology defines a unique geometry for a local
region when the corresponding connectivity graph is embedded
with geometrical constraints defined by (i) the atomic positions
of the network outside of the local region, (ii) a given forcefield
and (iii) a connectivity list.

In practice, this correspondence requirement is less stringent
than it appears as the graph is first reconstructed using a reference
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geometry belonging to the same automorphic group and the
nearby initial minimum state. More precisely, the saddle point
and the final energy minimum are reconstructed using both the
initial energy minimum and a reference saddle and final energy
minimum states, adding a strong ‘‘proximity’’ constraints that lim-
its clashes and high-energy configurations.

The reconstruction of saddle point configurations imposes a
strict test on the correspondence validity as it is an unstable state.
It is therefore easy to establish when the reconstruction has failed.
If that happens, it means that more than one geometry correspond
to the same topology. To resolve the problem, it is possible to
change the cut-off used to define the topology until we recover a
unique correspondence.

It is not necessary to ensure that the correspondence is bijec-
tive. More than one topology can therefore correspond to the same
geometry, within the limits of elastic deformations. While such
degeneracy adds unnecessary complexity to the event catalog, it
does not affect the kinetics nor the list of events associated with
a local minimum as each atom is defined by a single topology.

The generic topologically-based cataloging approach should be
applicable to all activated-based kinetics defined by discrete sets
of minima provided that the connectivity graph is sufficiently rich,
with cut-offs that could vary, for example, with the local environ-
ment. In practice, this means that systems with a very rough
energy landscape might be more difficult to handle with this
approach and would require to adapt cut-offs more specifically.

This roughness, however, does not always reflect a complex dif-
fusion landscape. This is the case, for example, of silica, SiO2, a net-
work glass where, at T ¼ 0, the oxygen atoms can occupy many
states of similar energy. Formally, therefore, it is very difficult to
reconstruct uniquely the oxygen position using a topological clas-
sification. However, since the exact position of the oxygen atoms
does not impact the diffusion barriers, it is possible to neglect
the degenerate oxygen positions without affecting the physics.

5.5. Handling flickers

As described above, the bac-MRM computes the average escape
time out of a basin of flickering states. While this solution repre-
sents a huge efficiency gain with respect to straightforward KMC,
building the basin can be time consuming. However, as soon as
the system goes out of the basin and evolves into a new state,
one has to rebuild the complete basin, which can slow consider-
ably the simulation.

To limit this cost, we can first store the whole basin in memory
until a new one is found. This way, if the system falls back into it,
after a few steps, we can at once find a new escape, with minimal
computational cost.

It is also possible, when the studied system is large and flickers
are far apart geometrically, to introduce local basins, independent
basins that can be treated as individual events and limit the infor-
mation loss between events. This way, when an accepted event
takes place in one part of the system, only basins physically near
the affected region are destroyed, the others remaining in the cat-
alog. Because relevant barriers are reconstructed at each step, the
introduction of local basins will not change the overall simulation
kinetics as long as the interaction between these basins is small
enough not to change the basin states and their event list. In prac-
tice, this means that we have applied this approach only for very
large systems, counting at least many thousands of atoms. In this
case, however, the efficiency gain is significant.

As a final comment, we note that the bac-MRM algorithm is
much easier to implement than more traditional first-escape time
approaches [82,78]. Recently, Athènes et al. proposed an efficient
first-escape time flicker-handling algorithm that seems to be of
similar computational cost as bac-MRM [83]. While our first
approach is statistically correct, the latter is exact on an event-
per-event basis. Whether there are actual non-statistical differ-
ences between trajectories generated with these two approaches
for real problems remains to be seen and we are currently testing
this question.
6. Conclusion

The simulation of complex materials on experimentally relevant
time scale remains a challenge. Recent developments, however,
have made it possible to access this time regime in system domi-
nated by activated mechanisms, i.e., mechanisms controlled by
energy barriers high with respect to the temperature, by extending
the application of kinetic Monte Carlo (KMC) methods to non-crys-
talline environments.

The kinetic Activation–Relaxation Technique (k-ART), an off-lat-
tice KMC approach with topologically-based on-the-fly cataloging
described in this review article, represents, at the moment, the
most flexible algorithm for handling point defects, alloys and even
fully disordered materials. We have shown here that it manages to
reach time scales a million to a billion times longer than MD for the
same systems, opening up the study of long-ignored phenomena.

As the more technical discussion shows, algorithms such as k-
ART are complex and cannot be run as easily as molecular dynam-
ics. However, as we learn from applying them, we can simplify
their use and optimize much more readily their parameters.
Clearly, we can expect to see a handful of other algorithms to be
proposed in the coming years. In addition to providing new
approaches for solving the problem, these will be helpful ensure
the validity of the various methods.

In the meanwhile, however, k-ART is there and available, open-
ing up a new era in computational materials sciences.
7. Code availability

The ART nouveau package is freely distributed here.1 It can be
linked to first principle codes and an example with SIESTA is pro-
vided. ART nouveau can also be used with empirical potentials either
ported to the code or, when the ART nouveau package is linked
against LAMMPS library, any forcefield available to LAMMPS [76,77].

The kinetic ART package is still in development, but is distrib-
uted on request. It can be used with the SW potential integrated
in the code as well as linked to the LAMMPS library for a wider
range of interactions. At this point, the k-ART package can be
obtained by contacting the authors.
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