
SoftwareX 9 (2019) 238–243

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

ART_data_analyzer: Automating parallelized computations to study
the evolution ofmaterials
Liang Tian a,b,∗, Lin Li a, Jun Ding c, Normand Mousseau d

a Department of Metallurgical and Materials Engineering, University of Alabama, Tuscaloosa, AL, 35404, USA
b Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
c Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
d Département de physique, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal (Québec), Canada

a r t i c l e i n f o

Article history:
Received 10 December 2018
Received in revised form 1 March 2019
Accepted 1 March 2019

Keywords:
Activation and relaxation techniques
Kinetics
Automation and parallelization
Machine learning

a b s t r a c t

The kinetics and dynamic evolution of material structures need a comprehensive understanding of
the potential energy landscape at current sample state. The Activation–Relaxation Technique (ART) is
an efficient way to probe the potential energy landscape by sampling a large amount of events (a
single event involves initial, saddle and final state) from which a statistical distribution of activation
energy barrier can be extracted. However, there has been a lack of a user-friendly toolkit to automate
the parallelization of running of ART simulations and post-processing of data from ART simulations
to extract useful physics information and insights. The ART_data_analyzer Python package has been
developed to serve this purpose and fill in this gap for the broad community of scientific researchers
interested in the kinetics and dynamic transitions of material structures. As a demo, we utilized this
software package to demonstrate the user-friendly workflow of studying ZrCuAl metallic glass sample
prepared by molecular dynamics.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Code metadata

Current Code version V1.1
Permanent link to code / repository used of this code version https://github.com/ElsevierSoftwareX/SOFTX_2018_251
Legal Code License GNU General Public License v3.0
Code Versioning system used git
Software Code Language used python
Compilation requirements, Operating environments & dependencies Linux, OS X, Microsoft Windows; numpy scipy matplotlib pandas scikit-learn

pyvoro pathos tess
If available Link to developer documentation / manual https://github.com/liangtianumich/ART_data_analyzer/blob/master/readme.txt
Support email for questions liangtianisu@gmail.com

Software metadata

Current software version V1.1
Permanent link to executables of this version https://github.com/liangtianumich/ART_data_analyzer
Legal Software License GNU General Public License v3.0
Computing platform/Operating System Linux, OS X, Microsoft Windows.
Installation requirements & dependencies numpy scipy matplotlib pandas scikit-learn pyvoro pathos tess
If available Link to user manual - if formally published include a
reference to the publication in the reference list

https://github.com/liangtianumich/ART_data_analyzer/blob/master/readme.txt

Support email for questions liangtianisu@gmail.com

∗ Correspondence to: 1024 North Engineering Research
Center, Tuscaloosa, AL, 35404, USA.

E-mail address: liangtianisu@gmail.com (L. Tian).

https://doi.org/10.1016/j.softx.2019.03.002
2352-7110/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

https://doi.org/10.1016/j.softx.2019.03.002
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2019.03.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2018_251
https://github.com/liangtianumich/ART_data_analyzer/blob/master/readme.txt
mailto:liangtianisu@gmail.com
https://github.com/liangtianumich/ART_data_analyzer
https://github.com/liangtianumich/ART_data_analyzer/blob/master/readme.txt
mailto:liangtianisu@gmail.com
mailto:liangtianisu@gmail.com
https://doi.org/10.1016/j.softx.2019.03.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

L. Tian, L. Li, J. Ding et al. / SoftwareX 9 (2019) 238–243 239

1. Motivation and significance

How atomic structure evolves inside any condensed matter
physical system depends on their potential energy landscape.
The potential energy landscape is a mapping between the high-
dimensional spatial coordinates of all atoms and their potential
energy. For atomic structures to evolve, it involves a series of
events, where each event consists of three critical states (i.e. ini-
tial state, saddle state and final state). A complete description
of potential energy landscape contains all possible states of the
samples, and can provide all possible events that could occur
in the sample. The activation energy barrier (i.e. potential en-
ergy difference between initial state and saddle state) determines
the transition rate of an event according to the transition state
theory. Therefore, determination of all possible events and their
corresponding activation energy barrier by calculating potential
energy landscape will lead to a thorough understanding of the
kinetics and dynamics of structural evolution of a condensed
matter sample [1].

The activation and relaxation technique ARTn software devel-
oped by Mousseau et al. [2–5] is one of the most widely used
tools to find the open-ended saddle states by initially trigger-
ing a cluster of atoms surrounding the central atom. For many
complex physical systems, the local atomic environment shows
strong spatial dependency. In order to obtain the correct statisti-
cal distribution of activation and relaxation events, it is necessary
to perturb the atoms at various locations of the atomic sam-
ple (e.g. molecular dynamics sample) to converge to the correct
distribution while minimizing computational expense. However,
the ARTn software has not implemented the parallelization of
each ARTn simulation, which implies that considerable manip-
ulation is required from users. Therefore, one of the purposes
of this ART_data_analyzer package is to address these issues to
allow users to sample sufficient events in parallel. This process
repeats iteratively until the activation energy of all events reach
convergence verified by the implemented student t statistical
convergence test. The other advantage of this ART_data_analyzer
package is to achieve the necessary user-friendliness through au-
tomation while still maintaining the essential physics workflow
for user to understand various task processes they are work-
ing on. The automation of various post-processing tasks in this
ART_data_analyzer package includes filtering events, calculating,
visualizing, correlating various physical quantities and/or their
changes.

This ART_data_analyzer package can be broadly applied in
studying the kinetics of various material classes and molecular
samples, such as crystalline materials and their defects (grain
boundaries and interfaces), amorphous and molecular materials
due to the generality nature of activation and relaxation tech-
nique to find open-ended saddle states. This ART_data_analyzer
package allows user customization through an easy-to-use in-
put setting file, which organizes various input parameters to
customize either ART running or ART data post-processing. For
example, not every event found by ART is a successful event. This
ART_data_analyzer package provides the option for the user to
specify their own customized filtering criteria to decide whether
an event is successful. This ART_data_analyzer package is also
very robust to any interruption during calculation due to ei-
ther machine failure or human intervention by providing vari-
ous well-documented and simple-to-use command options. This
ART_data_analyzer package provides the option to perform cor-
relation analysis between various physics data using machine
learning models. The package can also manage data by archiving
most necessary data files or deleting unused data files to consol-
idate data for saving disk space, which will facilitate the sharing
of research data between research teams.

Fig. 1. The pipeline software architecture of this ART_data_analyzer package
allows user customization in running various module tasks in a standard
workflow.

2. Software description

This ART data analyzer package is a Python package contain-
ing an easy-to-use command line tool art_data. This art_data
tool integrates with activation and relaxation technique soft-
ware ARTn package developed by Mousseau et al. [2–4]. This
ART_data_analyzer package is now part of ARTn repository in
gitlab. The ARTn package in gitlab is freely available by contacting
Normand Mousseau at normand.mousseau@umontreal.ca. This
ART_data_analyzer package automates the parallel computations
of the following aspects in a user workflow: (1) running the Ac-
tivation and Relaxation Technique ARTn simulations to generate
raw events data by the Python ART wrapper; (2) running post-
processing tasks of ART data (i.e., filtering, calculating, visualizing,
correlating various physical quantities change for large amount of
found events)

The automation processes include but not limited to: save all
necessary calculations in files, extract, transform and load data for
automated visualization, perform correlation analysis between
physical quantities.

2.1. Software architecture

The software package provides a pipeline architecture for vari-
ous modules to communicate through various results files created
by each module to allow the user to perform various tasks in a
standard workflow. In addition, the package allows the user to
customize the input parameters for each module by modifying
the input setting file before running each module. Fig. 1 shows the
pipeline software architecture of this ART_data_analyzer package
in a user workflow.

2.2. Software usage

Before running a large amount of ART simulations and ART
data post-processing tasks in parallel, it is worthwhile to note
that this automation processes will generate from tens of GBs to a
few hundred of GBs data, depending on the nature of each atomic
sample. User needs to ensure that ARTn is installed properly
and their environment is set up properly, such as ARTn built
with lammps library is installed correctly (including loading all
necessary lammps package before building lammps); PATH and
LD_LIBRARY_PATH for linux, DYLD_LIBRARY_PATH for Unix has
been set up in your current terminal session in order for ARTn
and lammps to find the openmpi, openblas library. These envi-
ronmental variables should be the same as those when building
lammps and ARTn. A detailed ART installation guide, located in
/ART_installation_guide/readme.txt, indicates how to install ARTn
with lammps.

After installing ARTn and lammps, the installation and usage
of ART_data_analyzer package can be as simple as downloading

mailto:normand.mousseau@umontreal.ca

240 L. Tian, L. Li, J. Ding et al. / SoftwareX 9 (2019) 238–243

the package to desired location and sourcing the modified en-
vironmental file. The following things need to be checked when
modifying the environmental file.

• Modify DATA_DIR to your desired directory path to save the
raw ART simulation data.

• Generally, other environmental variables can be set up the
same as the default values.

• Currently, the default settings are that the ART_INPUT stor-
ing input files directory path is the same as the DATA_DIR so
that all ART input files should be located under DATA_DIR.

• ART_SAMPLE contains the sample name, whose default sam-
ple name is conf.lammps and sample type is lammps_data.
These have been set up by export ART_SAMPLE=conf.lammps
and export SAMPLE_TYPE=lammps_data. This conf.lammps
lammps data file can be converted from lammps dump file
by Ovito visualization software easily [6]. In some occasions,
if user need to use the lammps dump file as the sample,
he can modify the sample name to the dump file name
(e.g., conf.dump) and sample type to dump, e.g., by export
ART_SAMPLE=conf.dump and export SAMPLE_TYPE=dump.

• MY_ART needs to be set up as the path to point to the
ART_data_analyzer package to use all features of the pack-
age including the package API art_data command line tool.

3. Software functionalities

A list of software functionalities can be checked by prompting
the art_data -h in the command line to see a list of options that
this ART_data_analyzer package can perform. A detailed guide of
using various functionalities of this ART_data_analyzer package
can be checked by art_data --desc. Fig. 2 shows the main content
of this ART_data_analyzer package on GitHub https://github.com/
liangtianumich/ART_data_analyzer.

This ART_data_analyzer package has been developed in a
general way to be robust for a wide range of homogeneous
and heterogeneous materials, e.g., crystalline materials, inter-
faces, grain boundaries, amorphous materials. By default, this
ART_data_analyzer package will analyze the whole sample. If a
user is only interested in a sub-section of the sample, e.g., grain
boundary region in a bi-crystal sample, then the user needs to
create a file called interested_atom_list.json in user specified data
directory, which contains a list of atoms’ id in all interested
sub-sections. This data directory has been set up by the user in
environment.sh as DATA_DIR. If this interested_atom_list.json file
has not been created by the user, then interested_atom_list.json
file will be automatically created as the list of all atoms in
the whole sample. Even though the user saves all atoms of the
interested sub-sections into the interested_atom_list.json file, he
can always choose to perturb part of the atoms in the file as
central atoms, which will be saved into central_atom_list.json file.
These two files will be created when using art_data --example
command argument. It is worthwhile to mention that we should
not use the only subsection of sample configuration, but need
to use the whole sample configuration as the input sample for
ART. The purpose is to ensure that the subsection configuration
of initial minimized whole sample does not substantially deviates
from the configuration of the only subsection sample after going
through ART’s initial minimization step, so that we are truly
probing the Potential Energy Landscape (PEL) of the initial whole
sample.

3.1. Running ART simulations in parallel

After modifying environment.sh and source it, the following
steps are needed to run ARTn simulations in parallel.

First, create and move 4 input files of ARTn bart.sh,
conf.lammps, in.lammps, interatomic potential file into directory
$ART_INPUT, default is $DATA_DIR.

refconfig file will be automatically created by the package later
based on lammps_data file conf.lammps or lammps dump file
conf.dump. When sample_type is dump, user need to pay atten-
tion if the atomic coordinates in lammps dump file is fractional
or absolute, now the default is using fractional coordinates. For
bart.sh, users need to have the correct input parameters. The
in.lammps is the lammps input script file, which default read
lammps_data file conf.lammps. It is worthwhile to note that some
potential need specific lammps packages when building lammps.
Otherwise, in.lammps file cannot read this potential.

Second, use --example command to generate input setting file
for art_data.

As mentioned above, if users are only interested in a sub-
section (e.g., grain boundary or interface) of the whole sample,
he needs to create a file called interested_atom_list.json under
$DATA_DIR to specify the interested sub-section. If this file does
not pre-exist, –example will automatically generate the file in-
terested_atom_list.json based on all atoms in the whole sample.
The usage of this command can be, e.g., art_data --example 2000
> input.json.

Third, run the command: art_data -s input.json --art --run,
where input.json is the same input file created in the previous
step. This command will automatically set up the input files
for running ARTn by running ./mod_bart.sh inside each test dir
in parallel. The input.json contains the key num_of_proc, which
specify the number of cores to run in parallel. Default setting uses
all cores in the local machine.

3.2. Running ART post-processing tasks in a user workflow in parallel

The previously created input file, e.g., input.json, is needed
for post-processing of raw ART data to run the following tasks.
However, users should manually edit the parameters related to
ART post-processing tasks in this input file. A list of these parame-
ters can be checked by art_data --settings-format. The text below
shows the major post-processing tasks currently implemented.
More task features will be implemented in the future.

(a) Filter events:
User can filter out unsuccessful events defined by the filtering
criteria saved in the input file by art_data -s input.json --filter.
The three filtering criteria are implemented as: (1) the energy
of saddle state must be higher than that of both the initial state
and the final state (2) the final state should not be identical to
the initial state (3) comparing event pairs to remove redundant
events [7].

(b) Perform activation and relaxation energy convergence
tests:
After filtering events, users can calculate energy by art_data -s
input.json --eng --calc. The user can check the statistical conver-
gence of filtered events by checking the convergence of activation
energy and relaxation energy using student t statistical test. The
current convergence tests have two modes:

(1) art_data -s input.json --eng --ttest OPTION PATH_1 PATH_2
, where OPTION is ‘ind’ or ‘rel’, PATH_1 is the path string to the
ART data directory 1 and PATH_2 is the path string to the ART
data directory 2.

(2) art_data -s input.json --eng --ttest_kfold OPTION k n will
randomly divide the ART data (saved in the ‘‘path_to_data_dir’’
key of input.json) into k folds for n different times and perform t
test on each data fold pair to ensure all fold pairs are convergent.

The user needs to test which ttest mode is a good convergence
criteria for their systems. For example, a good starting conver-
gence criteria is art_data -s input.json --eng --ttest_kfold ind 2

https://github.com/liangtianumich/ART_data_analyzer
https://github.com/liangtianumich/ART_data_analyzer
https://github.com/liangtianumich/ART_data_analyzer

L. Tian, L. Li, J. Ding et al. / SoftwareX 9 (2019) 238–243 241

Fig. 2. The main content of the ART_data_analyzer Python package shown in github.

3. If not converged, users can run more ART simulations until
convergence by art_data -s input.json --art --run_more N_TESTS,
where N_TESTS is the number of tests to be calculated more.
This command will update the central_atom_list.json file as well.
Users need to update the input file by art_data -s input.json
--update_input . Users need to add --re_calc when redo the event
filtering and energy calculations, such as art_data -s input.json
--filter --re_calc .

(c) Run calculations and visualizations:
art_data -s input.json --strain --calc will invoke the calculations
of atomic strains [8] and displacement and automatically plots
results for individual events and statistics of all events. art_data
-s input.json --strain -v will plot the quantities at event level after
strain calculation. art_data -s input.json --strain --stats will plot
the statistics of all events after strain calculation.

(d) Data-driven correlation analysis on physical processes
An example is to find the locally involved atoms for all ARTn local
events by a machine learning outlier detection algorithm. This lo-
cal atoms finding algorithm currently support training LinearSVR
model [9] between atomic displacement versus atomic shear
strains, using a user customized residual threshold to identify
outliers as locally involved atoms. This critical residual threshold
can be obtained by performing a parameter sweep on the residual
threshold with a double slope stopping convergence criteria as
the convergence criteria, which is implemented as art_data -s
input.json --find_residual. The critical slope could vary for differ-
ent types of samples, which can be customized by the user in
the input file as the key critical_local_atoms_slope. A reasonable
value of this critical residual threshold to start with is usually
around 0.54.

After the critical residual threshold (e.g., 0.54) is found, we can
identify all local atoms’ indexes for all filtered events by art_data
-s input.json --find_local_index 0.54. This will save local atoms’
indexes into a file called local_atoms_index.json.

(e) Find user customized list of atoms
To find the central atom of each initial triggered event, art_data -s
input.json --find_central_index will find central atom index and
save it into a file called central_atom_index.json for each event.

To find the atoms of initial triggered clusters, art_data -s
input.json --find_triggered_cluster_atoms_index will find initial
triggered atoms’ indexes and save them into a file called ini-
tial_cluster_atoms_index.json for each event.

To find the maximum displaced atom, art_data -s input.json
--find_max_disp_index will find the index of maximum displaced
atom during the initial to saddle process and save them into a file
called max_disp_atom_index.json for each event.

In addition to the argument above, users can also customize
the list of atoms by specifying the key atom_list in input file
input.json. For example, if atom_list is None or ‘all’, calculations
will operate on all atoms in the sample; if atom_list is [2,3,5,8],
calculations will operate on atoms whose indexes is 2,3,5,8

(f) Run calculations for interested list of atoms:

(1) atomic strain and atomic displacement:
art_data -s input.json --local --strain --calc will invoke the cal-
culations of atomic strains and displacements for only identified
local atoms of all filtered events. Users can replace --local with
--central if they are interested in the strains and displacements of
the central atom. Similarly, users use --initial for initial triggered
cluster atoms, --max_disp for the maximum displaced atom.

(2) voronoi index calculation:
art_data -s input.json --local --voro --calc will read local_atoms_
index.json and calculate the voronoi indexes for these local atoms
of all filtered events. Voronoi index calculations are performed
by using the pyvoro python package to provide an interface to
voro++ C++ library developed by Chris Rycroft [10].

(3) voronoi index classification
The voronoi index classifications [11,12] and visualizations are
done by art_data -s input.json --voro --classify, which will classify
voronoi indexes and plot the classification results for all filtered
events; calculate and plot the dynamic transition probability ma-
trix.

4. Tenary ZrCuAl metallic glass example demo

Fig. 3 demonstrates some results of using this ART_data_
analyzer package to study the kinetics and dynamic evolution
of the Zr46Cu46Al8 metallic glass (MG) sample prepared by
LAMMPS molecular dynamics package [13]. The addition of Al
leads to more Cu and Al-centered full icosahedral clusters and
more icosahedral medium-range orders in the ternary metallic
glass, which resembles nanostructured composites [14,15]. The
increase of full icosahedral clusters and the enhancement of the
atomic packing density are responsible for the higher activation
energy of ZrCuAl metallic glasses (mean 1.06 eV, higher than
calculated 1.02 eV of Cu50Zr50 prepared with the same cooling
rate) [16]. The shape of relaxation energy distribution spectrum is
very similar to those of Cu50Zr50 at various cooling rates, imply-
ing that the saddle states of various MGs is indeed resembling
the melting liquid state of the MGs, decoupling the activation
and relaxation processes [17]. Based on Ref [18], Al addition also
increases the resistance to the initiation of plastic flow and the
propensity for strain localization, which generally might lead to
a smaller ductility .

5. Impact and conclusions

We have developed a very user-friendly, parallelized, auto-
mated scalable Python software package to study the kinetics and
dynamic evolution for a broad range of material classes, such as
crystalline materials and their defects (e.g., grain boundaries and
interfaces) and amorphous materials.

Its impact and applications lie in:
(1) calculate the distributions of activation energy barrier and

relaxation energy

242 L. Tian, L. Li, J. Ding et al. / SoftwareX 9 (2019) 238–243

Fig. 3. Some demo results of using this ART_data_analyzer package on the Zr46Cu46Al8 metallic glass sample prepared under 10E10 cooling rate. Top left image shows
the molecular dynamics (MD) sample of Zr46Cu46Al8 metallic glass. Top right image shows the activation energy and relaxation energy distribution spectrums for
the MD sample. Middle left image shows atomic shear strain versus atomic displacement for each atom in a single representative event. The solid line and dashed
lines demonstrated using the LinearSVM machine learning method to find locally involved atoms in the representative event. Middle right shows the statistical
distribution of the number of locally involved atoms for all events. Bottom left shows a spatial map of voronoi index in x–y plane cutting through half way of z axis.
The voronoi indexes are classified into solid (blue), transition (green) and liquid (red) based on ref [11,12]. The bottom right shows the probability matrix for dynamic
transition between various type of atoms. ICO stands for atoms with local icosahedral ordering (solid type), ICO-LIKE stands for atoms with local icosahedral-like
ordering (transition type), GUM stands for atoms with local disorder (liquid type) . (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

(2) correlating local structural characteristics with local prop-

erties from large amount of event data to derive dynamical evo-

lution of local structure–properties relation.

Future versions of the Python software package will inte-

grate with other software packages, such as LAMMPS, Ovito and

pymatgen [19].

Acknowledgments

LT and LL acknowledge the financial support by the U.S. De-
partment of Energy, Office of Science, Basic Energy Sciences (BES),
USA, by Award no. DE-SC0016164. LT and LL appreciate the
valuable discussions with Dr Yue Fan at University of Michigan,
Ann Arbor.

L. Tian, L. Li, J. Ding et al. / SoftwareX 9 (2019) 238–243 243

References

[1] Andreas H. Exploring the potential energy landscape of glass-forming
systems: from inherent structures via metabasins to macroscopic transport.
J Phys: Condens Matter 2008;20(37):373101.

[2] Barkema GT, Mousseau N. Event-based relaxation of continuous disordered
systems. Phys Rev Lett 1996;77(21):4358–61.

[3] Malek R, Mousseau N. Dynamics of lennard-jones clusters: a characteriza-
tion of the activation-relaxation technique. Phys Rev E 2000;62(6):7723–8.

[4] Machado-Charry E, Beland LK, Caliste D, Genovese L, Deutsch T,
Mousseau N, Pochet P. Optimized energy landscape exploration us-
ing the ab initio based activation-relaxation technique. J Chem Phys
2011;135(3):034102.

[5] Athènes M, Marinica M-C, Jourdan T. Estimating time-correlation functions
by sampling and unbiasing dynamically activated events. J Chem Phys
2012;137(19):194107.

[6] Alexander S. Visualization and analysis of atomistic simulation data with
ovito–the open visualization tool. Modelling Simulation Mater Sci Eng
2010;18(1):015012.

[7] Fan Y, Iwashita T, Egami T. How thermally activated deformation starts in
metallic glass. Nature Commun 2014;5:5083.

[8] Li J, Shimizu F. Least-square atomic strain. 2005, http://li.mit.edu/A/
Graphics/A/annotate_atomic_strain/Doc/main.pdf.

[9] Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-Learn: Machine
Learning in Python. 2011.

[10] Rycroft CH. Voro++: a three-dimensional voronoi cell library in c++. Chaos
2009;19(4):041111.

[11] Ma E. Tuning order in disorder. Nature Mater 2015;14:547.
[12] Wang B, Luo L, Guo E, Su Y, Wang M, Ritchie RO, Dong F, Wang L, Guo J,

Fu H. Nanometer-scale gradient atomic packing structure surrounding soft
spots in metallic glasses. npj Comput. Mater. 2018;4(1):41.

[13] Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J
Comput Phys 1995;117(1):1–19.

[14] Tian L, Li L. A review on the strengthening of nanostructured materials.
Int J Curr Eng Technol 2018;8(2):236–49.

[15] Khoddam S, Tian L, Sapanathan T, Hodgson PD, Zarei-Hanzaki A. Latest
developments in modeling and characterization of joining metal based
hybrid materials. Adv Energy Mater 2018;20(9):1800048.

[16] Li F, Zhang H, Liu X, Dong Y, Yu C, Lu Z. Effects of al addition on atomic
structure of cu-zr metallic glass. J Appl Phys 2018;123(5):055101.

[17] Fan Y, Iwashita T, Egami T. Energy landscape-driven non-equilibrium
evolution of inherent structure in disordered material. Nature Commun
2017;8:15417.

[18] Cheng YQ, Cao AJ, Sheng HW, Ma E. Local order influences initiation of
plastic flow in metallic glass: effects of alloy composition and sample
cooling history. Acta Mater 2008;56(18):5263–75.

[19] Ong SP, Richards WD, Jain A, Hautier G, Kocher M, Cholia S, Gunter D,
Chevrier VL, Persson KA, Ceder G. Python materials genomics (pymatgen):
A robust, open-source python library for materials analysis. Comput Mater
Sci 2013;68:314–9.

http://refhub.elsevier.com/S2352-7110(18)30285-1/sb1
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb1
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb1
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb1
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb1
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb2
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb2
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb2
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb3
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb3
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb3
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb4
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb4
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb4
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb4
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb4
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb4
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb4
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb5
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb5
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb5
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb5
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb5
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb6
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb6
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb6
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb6
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb6
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb7
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb7
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb7
http://li.mit.edu/A/Graphics/A/annotate_atomic_strain/Doc/main.pdf
http://li.mit.edu/A/Graphics/A/annotate_atomic_strain/Doc/main.pdf
http://li.mit.edu/A/Graphics/A/annotate_atomic_strain/Doc/main.pdf
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb9
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb9
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb9
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb10
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb10
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb10
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb11
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb12
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb12
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb12
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb12
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb12
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb13
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb13
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb13
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb14
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb14
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb14
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb15
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb15
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb15
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb15
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb15
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb16
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb16
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb16
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb17
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb17
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb17
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb17
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb17
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb18
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb18
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb18
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb18
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb18
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb19
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb19
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb19
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb19
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb19
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb19
http://refhub.elsevier.com/S2352-7110(18)30285-1/sb19

	ART_data_analyzer: Automating parallelized computations to study the evolution of materials
	Motivation and significance
	Software description
	Software architecture
	Software usage

	Software functionalities
	Running ART simulations in parallel
	Running ART post-processing tasks in a user workflow in parallel

	Tenary ZrCuAl metallic glass example demo
	Impact and conclusions
	Acknowledgments
	References

