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2Science Program, Texas A&M at Qatar, Texas A&M Engineering Building, Education City, Doha, Qatar

(Received 23 June 2011; published 17 October 2011)

We present a detailed description of the kinetic activation-relaxation technique (k-ART), an off-lattice,
self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search. Combining a topological
classification for local environments and event generation with ART nouveau, an efficient unbiased sampling
method for finding transition states, k-ART can be applied to complex materials with atoms in off-lattice positions
or with elastic deformations that cannot be handled with standard KMC approaches. In addition to presenting
the various elements of the algorithm, we demonstrate the general character of k-ART by applying the algorithm
to three challenging systems: self-defect annihilation in c-Si (crystalline silicon), self-interstitial diffusion in Fe,
and structural relaxation in a-Si (amorphous silicon).
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I. INTRODUCTION

Solid-phase diffusion in materials science and condensed
matter is dominated by rare atomic diffusion events associated
with high-energy barriers as measured with respect to temper-
ature. These stochastic processes take place on an extended
time scale that makes them very difficult to reproduce using
linear simulation schemes such as molecular dynamics. Low
rates, however, allow us to consider this series of processes
as independent Markov chains. In this case, it is possible to
apply the kinetic Monte Carlo (KMC) algorithm proposed by
Bortz et al. [1–4]. Based on transition state theory, KMC uses
a catalog of prespecified diffusion mechanisms to compute at
every stage the exit rate from a local minimum. The clock is
then advanced using Poisson’s law, a move is selected with
the appropriate rate, and a dynamical trajectory is constructed.
While time steps in KMC are dominated by the lowest energy
barriers, it is possible, under the right conditions, to simulate
on experimental time scales.

Since it was proposed, KMC has been used extensively in
materials science, condensed matter, and many other fields.
Its well-known limitations have nevertheless prevented the
method from being applied widely to complex systems. In
particular, since KMC depends on a predefined event catalog,
systems under study have to be discretized and atomic motion
limited to fixed lattice positions [3]. In this way, it is possible
to evaluate from the onset all possible moves that will be
included in the catalog. For relatively simple kinetics, such
as metal-on-metal growth, these limits are not major hurdles.
They become a problem when trying to take full account of
the lattice associated with long-range elastic effects and, more
importantly, off-lattice and disordered conformations.

Over the years, a number of algorithms have been proposed
to lift, at least partially, these limitations. Most can be
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classified in one of two categories: the addition of a continuum
approximation for computing the effects of long-range strain
deformations on the energy barriers and on-the-fly evaluation
of energy barriers. The first class of methods adds long-
range contributions, computed from a number of extrapolation
schemes, to the energy barriers extracted from the predefined
catalog of events [5,6]. The second class relaxes the need for
a predefined catalog and, in some cases, moves away from
a lattice-based description. This is the case, for example, of
the self-learning KMC approach by Trushin et al., which keeps
lattice-based displacement, but introduces an on-the-fly search
for barriers [7]. To remove the constraints of a lattice-based
description, other methods construct a new catalog at each step
to determine the next step, using various climbing methods
such as the dimer [8,9], eigenvector-following [10], or the
autonomous basin climbing methods [11].

The first class of methods [5–7] remains limited to on-
lattice positions in addition to providing often ill-controlled
corrections to energy barriers modified by elastic deformation.
The second class, with an on-the-fly, off-lattice approach, is
much more flexible. However, it is inefficient as a catalog
must be rebuilt at each step, making it costly to study complex
systems with a large number of possible diffusion mechanisms
[8–11].

In 2008 we introduced the kinetic activation-relaxation
technique (k-ART), an on-the-fly, off-lattice KMC method that
lifts these limitations [12]. In this initial work we showed
that for a system of vacancies in Si at 500 K it achieves
significant speed-ups over standard MD, while retaining a
complete description of the relevant physics, including long-
range elastic interactions. More recently, Kara et al. proposed
a similar self-learning kinetic Monte Carlo method based,
however, on less controlled procedures for finding barriers
and classifying off-lattice configurations [13].

Here we present in detail the k-ART algorithm, which
couples the activation-relaxation technique (ART nouveau)
[14,15] for generating events and calculating barriers with
NAUTY [16] for the topological classification of events. We
also present improvements introduced for handling low-
energy barriers and large systems. Finally, we demonstrate
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the efficiency and versatility of the method by applying
it to three systems: self-defect annihilation in crystalline
Si, interstitial diffusion in Fe, and relaxation in amorphous
silicon.

II. OVERVIEW OF KINETIC ART

Following standard KMC, the k-ART method uses an
event catalog to compute the rate of escape from a local
minimum and bring forward the simulation clock. There are
three fundamental differences with respect to standard KMC,
however. First, discretization of the local environment is done
through topology instead of geometry, allowing atoms to adopt
freely any spatial arrangement instead of being constrained to
predefined lattice positions. Second, the catalog is not fixed at
the simulation onset, but grows as new local environments are
visited, allowing the study of very complex systems. Third,
event energy barriers are fully relaxed at each step to take
into account all geometrical rearrangements due to short- and
long-range elastic deformations.

A simulation starts from an initial configuration relaxed into
a local energy minimum. The local topology associated with
each atom is first characterized with NAUTY [16]. All atoms
sharing a specific topology are presumed to be associated
with the same list of activated mechanisms. This is the basic
assumption of k-ART and, as we will see below, it can be
made to hold on a per-atom basis. This approach results in a
considerably reduced amount of generated and handled data.
For a single vacancy in crystalline silicon (c-Si), for example,
one only needs to consider 20 different topologies to describe
all local environments, irrespective of the system size.

A search for activated pathways is launched for each
topology using ART nouveau [14,15]. ART nouveau was
shown to identify efficiently relevant diffusion mechanisms in
systems described with both empirical and ab initio methods
[17–20]. This method has been extensively characterized in
Ref. [21]. A number of technical improvements are also
reported in Ref. [22] and new events can now be generated
with as little as 300 force evaluations with either empirical or
ab initio potentials. Each event is classified according to the
initial minimum, the saddle configuration and the final state
topologies and stored in the catalog.

Once the extensive search for events on all topologies is
finished, relevant events for the current configurations are
collected. All low-energy barrier events are relaxed for specific
atoms, to include not only topological but also geometrical
effects. At this point, following Bortz et al. [1], the elapsed time
to the next event is computed as �t = − ln μ/

∑
i ri where μ

is a random number in the [0,1] interval and ri is the rate
associated with event i. The clock is pushed forward, an event
is selected with the proper weight, and the atoms are moved
accordingly, after a geometrical reconstruction.

Once in this new configuration, the process starts again:
the topology of all atoms belonging to the local environment
around the new state is constructed; if an unknown topology
is found, a series of ART nouveau searches are launched,
otherwise, we proceed to the next step. After all events are
updated, the low-lying barriers are, once again, relaxed before
applying the KMC algorithm.

III. ALGORITHMIC AND IMPLEMENTATION DETAILS

A. ART nouveau

The search for activated mechanisms is performed using
ART nouveau [14,15], an open-ended climbing method for
finding first-order saddle points surrounding a local minimum.
As the most recent version of the algorithm is described in
Refs. [21] and [22], we give here only a brief overview of
the method. Event search with ART nouveau proceeds in
three steps: (1) starting from an energy minimum, the system
is deformed locally in a random direction until the lowest
curvature of the Hessian matrix becomes negative, indicating
an instability; (2) the configuration is then pushed along this
direction of negative curvature while the energy is minimized
in the hyperplane orthogonal to this direction until the total
force falls below a set threshold, indicating that a first-order
saddle has been reached; (3) the configuration is pushed over
this point and is relaxed into a new minimum. This set of
three configurations—initial minimum, saddle point, and final
minimum—forms an event.

Since activated processes are local in nature, each event
is initiated by displacing a given atom and its neighbors in
a random direction. The exact size for this displaced region
depends on the system studied. In semiconductors, it involves
typically first and second nearest neighbors. In the case of
Si vacancies, for example, the displacements are applied to
the central atom and all atoms within a 3.0 Å radius from
it. The initial convergence criterion for the saddle point is
typically set to 0.5 eV/Å. This is associated with the generation
of the generic event catalog (see below). Further relaxation
associated with the calculation of specific events uses a
0.1 eV/Å threshold.

To decrease computational cost, ART nouveau never
computes the Hessian directly, but rather uses a mixture of
Lanczós [23] and DIIS [24] methods for converging to the
saddle point. As discussed in Ref. [22], less than 300 force
evaluations are generally needed to converge to a first-order
saddle point. Taking into account all processes, including
nonconverging steps and relaxation into a new minimum,
about 600–800 force evaluations are required, on average, per
successful event search. Relaxation of specific events, which
starts near a reconstructed saddle point, are normally much
faster, necessitating typically 1 to 80 force evaluations.

B. Topological classification and event generation

Topological classification of the local atomic environment
is a crucial step in k-ART, as it provides a means of discretizing
and cataloging local configurations, while taking into account
all possible atomic arrangements and elastic deformations.

Atomic topologies for a given local configuration are
computed as follows. We define a local environment consisting
of all atoms within a sphere of a predefined radius centered
around each atom, as illustrated in Fig. 1. These are then
connected following a neighboring prescription, such as first
neighbor distance cutoff or a Voronoı̈ tessellation, forming a
truncated connectivity graph, that is, a set of bonds connecting
vertices, without geometrical information. This graph is then
analyzed and classified using the freely available topological
software NAUTY, developed by McKay [16]. This software
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(d)

FIG. 1. (Color online) Local topology analysis procedure in k-
ART. A truncated graph (b) is extracted from the complete lattice (a).
This graph is analyzed through NAUTY (c), which returns a unique
key and the associated topology (d).

package provides the topology index and all information nec-
essary for uniquely identifying each environment, including
the permutation key needed to reconstruct a specific geometry
from the generic topology and a set of reference positions. The
topology index from NAUTY has the form of an ordered set of
three integers, which we use as input to a hash function to
generate a unique topology label (hash key).

The geometrical reconstruction from a purely topological
graph is made possible because we know the atomic positions
of all atoms surrounding the local configuration described by
this graph. This introduces sufficient constraints to ensure that
most of time, as discussed below, a given graph corresponds
to a unique fully relaxed geometry.

The neighboring prescription and the size of the truncated
region are selected to ensure that, in most cases, the config-
uration is uniquely defined through this network, that is, the
connectivity graph must lead to a unique structure once relaxed
with a given interatomic potential. In the case of crystalline Si,
for example, we define the local environment around an atom
by a sphere of radius 5.0 Å, which includes about 40 atoms;
two atoms are linked if their distance is less than 2.8 Å.

Once all new topologies are identified, a succession of ART
nouveau searches are launched on each of them. The optimal
number of searches done per topology depends on the nature
of the system and can be adjusted to ensure that all low-energy
barrier events, which dominate the dynamics, are found. In our
current implementation, it is increased also with the number of
times a given topology is seen, ensuring that the most common
topologies are explored more often.

Every new event found with ART nouveau is analyzed and
compared to the list of already known events for that initial
topology. If an event with the same activation energy is already
in memory, a series of tests are performed to assess whether
or not it is the same event. When the generated event is judged
to be new, it is then assigned to the topology centered on the
atom that moved the most during the event, irrespective of
the initial activation. The event label is obtained by combining
the topology labels at the initial, saddle, and final states. We
also keep in memory the position of the cluster of atoms for
the initial, saddle, and final configurations. These are necessary
(a) as a reference for the geometrical reconstruction from the
saddle or the final configuration topological mapping for atoms
belonging to the same topological class and (b) to compare the

event in the list with newly generated events. Once a generic
event is added to the database, it is also added to the binary
tree of events and to the histogram (see Sec. III C).

Finally, based on these data, a first generic rate is associated
with the event by setting

ri = τ0 exp (−�Ei/kBT ) , (1)

where τ0, the attempt frequency, is fixed at the onset and, for
simplification, assumed to be the same for all events (1013 s−1).
�Ei is the barrier height, that is, the energy difference between
saddle point and initial minimum. kB and T are, as usual, the
Boltzmann constant and the temperature, respectively.

While using a fixed attempt frequency is a simplification,
it has been shown in several systems that τ0 varies only
weakly with the chosen pathway [25]. The value of 1013 s−1 is
compatible with pre-exponential factors in iron derived from
experiment [26] and in simulation [27]. For silicon, this value is
also compatible with ab initio computations of neutral vacancy
diffusion [19].

In certain symmetric configurations, it is possible that
distinct events associated with a given atom have identical
topologies of initial state, saddle point, and final state, and the
same barrier height and absolute displacement. To distinguish
between those and fully account for the symmetries, we also
include the direction of atomic motion in the description of
events. Checks on a number of highly symmetric states in Si
and Fe show that this classification recovers all pathways and
accurately discriminates between them.

Hash keys provide a fast way of storing and retrieving event
or topological information. If the key of a new event or topol-
ogy is already in use (a so-called hash collision), the key value
is incremented by one until a free key is found. The arrays for
events and topologies account for most of the memory used in
k-ART simulations, and so a balance has to be struck between
size and speed. Too large arrays waste RAM, while too small
ones provoke frequent hash collisions and fill up earlier.

One of the major advantages of this approach is that this
constantly updated catalog of generic events and topologies
can be saved to the disk, made available to others, and reused
on the same and similar systems. Multiple catalogs from
different k-ART simulations can also be merged to create a
larger database that can be used to start new simulations on
the same system with a significant speed increase.

C. Adaptive generic event relaxation into specific events

Events generated for a given topology are known as generic
events. It is assumed that all atoms sharing the same topology
will have access to these events with, however, a small
adjustment to the energy barrier due to local variations in
position or long ranged elastic interactions. To take these
changes into account, generic events with low barriers are
reconverged for each realization, resulting in specific events,
each linked to a particular atom.

Starting from a common topological generic event, a
specific event is generated for each atom having the
same topology by taking advantage of the ordered list of
cluster atoms around the central atom obtained using NAUTY

(permutation key). With this information, it is possible to
reconstruct the geometry of the specific saddle and final
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FIG. 2. (Color online) Generic events stored in a histogram used
for an adaptive event relaxation procedure.

minimum conformations by mapping the displacement vector
and transforming geometrically a given region in the system
with respect to the generic configuration.

In an earlier version of the algorithm [12], specific events
were identified as those belonging to generic classes with a
an energy barrier of 15 kBT or less. Here, we adopt rather an
adaptive algorithm based on the kinetics of the system. All
generic events are ordered and stored into slices of 0.1 eV
according to their energy barrier in a histogram (see Fig. 2).
For each slice, the total rate is computed and the cumulative
rate up to each energy barrier range is calculated.

The relaxation into specific events starts from the bottom
of the histogram and then proceeds to higher energy barriers
until events accounting for a large fraction of the total rate are
relaxed (we use 99.9% here). The remaining generic events are
copied to unrefined specific events. In this way, we ensure that
almost all selected moves will be picked from the list of fully
relaxed individual barriers. Geometric and elastic effects on
the energies of local minima and transition states are therefore
fully included in the rates.

D. Crucial aspects

1. Uniqueness in the correspondence
between a geometry and topology

One of the main k-ART advantages resides in the topology-
based discretization. To be valid, this classification requires
a unique correspondence between a local geometry and a
topology. With the right building rules for the truncated
graph, it turns out that this approximation almost always
works for covalently bonded systems, but also for metals.
Since k-ART relies on the delicate reconstruction of transition
states for computing specific events, a failure of the relation
between topology and geometry leads systematically to the
disappearance of this first-order saddle point and can be easily
detected. In other words, event reconstruction automatically

fails when a given topology corresponds to more than one
geometry.

When an ill-defined topology corresponding to more than
one geometry is encountered for the first time, k-ART
automatically adjusts the atom-atom connectivity cutoff used
within the cluster of atoms forming this graph, until the
geometries initially associated with the same topology are now
placed into two different classes. The unique correspondence
between local geometry and topology is now re-established.

For computational ease, a marker identifies already encoun-
tered difficult topologies so that k-ART can recognize them on
the fly and test them to ensure that the correct event catalog
is used. To do so, k-ART maps one event from each of the
associated subtopologies, until a successful map is achieved.
If no event can be mapped using the current subtopologies, a
new label is again issued. Each difficult topology can have as
many subtopologies associated with it as necessary. In practice,
topology collisions are extremely rare, if reasonable cluster and
neighbor cutoffs are used. If there is a collision, it can usually
be resolved with only one subtopology.

2. Handling low-energy barriers

In KMC, dynamics is dominated by a system’s lowest
barrier energy. When the energy landscape consists of basins
with numerous states connected by very low-energy barriers
compared to those needed to leave these basins, the algorithm
becomes trapped into computing nondiffusive events, decreas-
ing significantly its efficiency in two ways. First, it limits the
attainable simulated time, as the low-energy internal barriers
produce a high total rate sum and thus a short average KMC
time increment. Second, computational resources are bound
to explore the states within a basin without yielding much
information, as effective diffusion takes place typically outside
the energy basins.

We had previously implemented a TABU-like approach
[28], that bans transitions rather than states [29]. This algo-
rithm is simple to implement and provides a thermodynamical
solution when there is a clear energy separation; it fails,
however, when few pathways are available or the energy
spectrum is continuous. To account for these situations, we
developed the basin-auto-constructing Mean Rate Method
(bac-MRM), a basin-based acceleration scheme inspired by the
mean rate method (MRM) of Puchala et al. [30]. A description
of MRM can be found in the Appendix. In summary, MRM
separates the trajectory into transient states and absorbing
states, and accelerates the simulation by averaging over all
possible jumps between transient states, yielding the correct
probability to exit a basin to a certain absorbing state.

In kinetic ART, the relevant entities are not states, but
events, characterized by an energy barrier between the initial
and final states. In an event with energies Ei , Es , and Ef at the
initial state, the saddle point, and the final state, respectively,
we define the forward energy barrier as bf = Es − Ei , and the
inverse barrier by bi = Es − Ef . In both cases, rates going
forward or backward are determined by Eq. (1). Basins are
then identified on the fly by the barrier heights separating the
basin states: Both the forward and the inverse barrier must be
smaller than a user-defined threshold.
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Starting in a local minimum, low-energy barrier events are
marked as potential basin events, and the atomic displacement
associated with these events is stored. If such an event is picked
for execution, it is added to the current network of basin events
(i.e., for the first basin event, this is at that time the only event),
removed from the tree of available events, and executed as
normal. The system is then in state two, and the k-ART event
finding algorithm is started from this state. All events from
previous basin states are kept in the tree and could be picked
as KMC move.

After state two has been searched for possible events, and
before the next event is picked, the MRM is applied to the
basin consisting of two states: The rates leaving the basin are
modified following Eq. (A4), and the total rate is adjusted
accordingly. The next step is then selected. It can either lead
to a new basin state, to be added according to the procedure
described above, or out of the basin, in which case a standard
k-ART move is applied. If an event is found to lead to an
already explored basin state, it is rejected, removed from the
tree, and added to the basin, adjusting the rates as needed.

Bac-MRM explores basins on the fly, and only as far as
necessary. Simultaneously, no state is intentionally visited
twice. While the internal dynamics within a basin is lost,
the basin mean rate method in our implementation yields
the correct distribution of exit states depending on the basin
internal rates and the point of entry into the basin.

The computational overhead of bac-MRM is small and the
CPU resources needed for all basin related operations are
negligible compared to the time required to explore a single
topology.

3. Optimizing k-ART for large scale systems

Because activated mechanisms are local in nature, it
is relatively straightforward to optimize k-ART to handle
systems with several tens of thousands of atoms. Indeed,
diffusive motion typically involves regions composed of a few
tens to a few hundreds of atoms, and the forces induced by
this displacement typically propagate up to a few nanometers.
Therefore, by coupling standard cell lists [31] and the Verlet
algorithm [32] for constructing neighbor lists with a local force
calculation, the computational effort of generating an event
becomes almost system-size independent.

Local forces are first computed on all atoms involved in
the event plus their first and second neighbors. As the system
evolves, atoms on which the force exceeds a set threshold (of
0.01 eV/Å, in the case of c-Si) become labeled as involved
and their first and second neighbors are added to the list. This
process ensures that forces are computed only on the relevant
atoms. The generation of new events and the relaxation of
specific events therefore is entirely local, with only a global
minimization performed after each KMC move to take into
account all elastic effects.

We simulated several systems composed of 2744 to 27 000
c-Si atoms using an empirical Stillinger-Weber potential,
periodic boundary conditions, and roughly the same density
of vacancies and interstitials in equal numbers. The scaling
is given as a function of system size in Fig. 3 for exploring
a new topology on a single processor. Because of rare global
calculations during the analysis of events, the algorithm has
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FIG. 3. (Color online) The average computational time required
to explore a new topology as a function of system size. We show
results with 2744 atoms, 5832 atoms, 13 824, and 27 000 atoms with
1, 2, 4, and 8 vacancy and interstitial defects, respectively.

a weak linear dependance of 0.03 s per atom. However, the
sublinear terms, responsible for about 600 s, are dominant
for system size of several tens of thousands of atoms. These
sublinear terms are associated to the time required to attempt
15 saddle point searches on one topology and to analyze the
results as computed on a single core of a 2.66 GHz Intel Xeon
X5550 CPU (all CPU times reported in this paper are computed
on the same CPU).

IV. APPLICATION OF k-ART

We now apply k-ART to three different systems, in order
to demonstrate the flexibility of the method: (a) Vacancies
and interstitials in c-Si. This work expands on the vacancy
diffusion study presented in Ref. [12]. (b) Interstitials in
Fe. Diffusion mechanisms for self-interstitial in iron are
surprisingly complex; this system represents a good test of
k-ART’s ability to sample such landscape. (c) Relaxation of
amorphous silicon (a-Si). By construction, KMC methods have
been mostly limited to lattice-based problems; here we show
that the topological approach of k-ART is sufficiently flexible
to handle disordered materials.

A. Vacancies and interstitials in Si

We studied the annealing of eight pairs of vacancies
and interstitials in an 8000 atoms c-Si box at 500 K using
the Stillinger-Weber potential [33] and periodic boundary
conditions. A snapshot of the initial state of the simulation is
shown in Fig. 4. With this interatomic potential, the diffusion
activation barrier for an individual vacancy is about 0.43 eV
[34]. Interstitials can be stabilized in three states, two of which
are almost degenerate in energy at about 0.75 eV above the
first one. Diffusion for the single self-interstitial is dominated
by a barrier at 0.94 eV [35].

Figure 5 (bottom) shows the evolution of the total energy,
measured with respect to the crystalline state, and the squared
displacement as a function of simulated time for the system
above, representing a total of 2000 k-ART steps. Vacancies
dominate the diffusion with significantly lower energy barriers.
Each of the five large drops in energy corresponds to the
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LAURENT KARIM BÉLAND et al. PHYSICAL REVIEW E 84, 046704 (2011)

FIG. 4. (Color online) The initial state of our 8000 atoms c-Si
box containing eight vacancies and eight interstitials. We only
show over-coordinated (small spheres) and under-coordinated atoms
(large spheres).

annihilation of an interstitial-vacancy (IV) pair, while from
roughly 1 μs on, bound defects reorganize themselves without
any recombination. We show in Fig. 6 an example of a typical
isolated recombination. We observe several metastable states
for the bound pair, before recombination, in general agreement
with the findings of Tang et al. [36] and Marqués et al. [37].

Energy fluctuations in Fig. 5 are also associated with the
formation of self-defect aggregates, such as a bi-interstitial and
a vacancy complex, as well as elastic deformations. These can
cause important differences between IV-pair recombinations.
This is the case of the second IV recombination (at t =
0.08 μs), which differs markedly from the four others. Indeed,
the presence of nearby vacancies (at a distance of about 1 nm
from the main interstitial and vacancy) significantly modifies
the relaxation mechanism. They introduce an intermediate
oscillatory state which flickers for a duration of nearly 45 ns
(see Fig. 7) before IV recombination. This metastable state
underlines the importance of correctly handling long-range
elastic and topological effects for the defect kinetics in
semiconductors.

Even small changes in the environment, up to 20 Å away
from the defect, can change the kinetics of defect diffusion
and recombination. For example, IV-pair recombination, for
a nearly, but not completely isolated pair can follow at least
two pathways, with barriers differing significantly: 0.45, 0.39,
0.19, and 0.20 eV in the first case, which is in good agreement
with Gilmer et al. [38], and 0.36, 0.19, 0.22, and 0.51 eV in
the second.

The advantage of k-ART’s approach to catalog building
can be seen in Fig. 5 (top). Since only previously seen
topologies are included, the catalog grows as new regions
of the configurational space are visited, avoiding the need to
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FIG. 5. (Color online) Simulation of eight IV pairs in an 800-atom
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computation time as a function of the simulation time. Bottom: The
evolution of the total energy, measured from the perfect crystal, and
of the the squared total displacement as a function of the simulation
time. The zero on the energy scale corresponds to a box with no
defect. Arrows indicate important interstitial-vacancy annihilation
states shown as snapshots in Figs. 6 and 7.

construct all possible conformations from the onset, a task
that would rapidly be impossible, even for a system with 16
defects. We see that as the defects first diffuse in isolation
for the first 20 ns, very few new topologies are encountered.
It is only as the recombination processes take place, between
t = 20 ns and 1 μs, that many new environments are visited,
increasing rapidly the number of sampled conformations from
a few hundreds to almost 20 000 topologies. While this number
is large, all events are stored in a catalog and serve as such in
any new simulation, reducing considerably the CPU cost over
time.

B. Self-interstitial cluster diffusion in iron

Iron is widely used in nuclear power plants, which makes
the modeling of irradiation-induced defects interesting, in
particular single and clustered self-interstitial atoms (SIA)
[39], from the microscopic to large scale, an important topic
in computational materials science [40,41].

Simulating SIAs on an atomistic level is challenging
for both molecular dynamics (MD) and standard KMC
methods. On the one hand, the activation energies of defect
migrations are rather high, so that MD simulations must be
performed at comparatively high temperatures (up to 1200 K,
cf. Refs. [42,43]) to explore the energy landscape within the
accessible simulation times. This makes it difficult to identify
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(a)Δt = 0 ps (b)Δt = 129 ps (c)Δt = 351 ps (d)Δt = 652 ps

(e)Δt = 658 ps (f)Δt = 659 ps (g)Δt = 667 ps

FIG. 6. (Color online) A typical interstitial-vacancy recombination. Time is measured from the initial snapshot, taken at 0.2 μs and indicated
by arrow B in Fig. 5. Over-coordinated atoms are shown as small spheres and under-coordinated atoms are shown as large spheres. The empty
figure in (g) indicates that there are no more topological defects in the local environment.

structures and mechanisms important at the significantly
lower operating temperatures. On the other hand, due to
the wealth of arrangements of interstitial atoms and other
defects, it is a formidable task to build a catalog of possible
transitions a priori (to use in a KMC simulation), without
accidentally neglecting important migration paths. Often, a
very reduced catalog of transition pathways is used [44].
All this is complicated by the fact that in iron clusters of
interstitial atoms can glide in one dimension with very small
migration energies (tens of milli-electron volts) [42].

K-ART is an ideal tool to explore the migration pathways of
SIAs without any assumptions needed to assemble a catalog of
events and the associated barriers a priori. Events are searched
for on the fly for each topology in the system, with corrections
applied at each KMC step to account for elastic distortions by
surrounding defects. As outlined in Sec. III D 2, low barriers
can also be treated efficiently with the basin-autoconstructing
mean rate method.

(a)Δt = 0 ps (b)Δt = 150 ps

(c)Δt = 152 ps (d)Δt = 322 ps

FIG. 7. (Color online) Oscillation of an intersitial-divacancy
complex during an interstitial-vacancy recombination in the presence
of nearby vacancies. Time are measured from the initial snapshop,
taken at 50 ns and indicated by arrow A in Fig. 5. Over-coordinated
atoms are shown as small spheres and under-coordinated atoms are
shown as large spheres.

For our iron simulations, we used the Ackland-Mendelev
potentials [45], an improved version of the potential developed
by Mendelev et al. [46]. This potential describes defects
accurately [47] and was used in MD [42,43] and ART nouveau
[21] simulations of iron SIA systems. The EAM energy and
force calculation routine was adapted from IMD [48] and can
use any tabulated potential in IMD form.

To test the implementation, a single self-interstitial atom
was embedded in a 1024-atom supercell. In the ground
state, the interstitial forms a dumbbell in [110] direction in
agreement with earlier static simulations [49] and ART studies
[21]. The transition with the lowest energy barrier follows
the nearest neighbor (NN) translation-rotation mechanism
proposed by Johnson [50] with an activation barrier of
0.3 eV. Higher barrier events include a transformation to the
[11ξ ] dumbbell, followed by an on-site rotation, then pure
translations to first and second NN sites. Other higher-energy
events were found, but were not picked to be executed during
our simulations.

In simulations with two clustered interstitials, k-ART
recovers the mechanism for interstitial migration suggested
by Johnson [50]: Both interstitials each perform a
nearest-neighbor translation-rotation jump. This can happen
in a single step, or in two sequential moves. The states and
barriers found in our simulation agree with the results from
Marinica et al. [21]. A sample trajectory of the di-interstitial
system over 2000 KMC steps is shown in Fig. 8.

For a single self-interstitial, at the temperature of interest,
barriers are well above kBT , and there are no flickers. For
SIA clusters, however, there are sequences of states separated
by low barriers. In the di-interstitial case, Marinica et al. [21]
find a basin of 0.25 eV above the ground state, with barriers
below 0.1 eV separating the states. We reproduce that basin
as demonstrated in a detail of the trajectory in Fig. 9. While
the system explores the basin, low-energy barriers keep the
system clock almost at a standstill.

In a system with a 4-SIA cluster, a basin is found around
the ground state: Small reorientations of the four dumbbells
lead to about 20 unique configurations separated by extremely
low barriers (<0.1 eV). Since the dynamics is dominated by
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FIG. 8. (Color online) Simulation of an iron di-interstital cluster
in a 1024-atom box at 300 K. Top: The number of encountered
topologies and the computation time as a function of the simulation
time. Bottom: The evolution of the total energy, measured from the
ground state, and of the the squared total displacement as a function
of the simulation time. The system propagates mainly by the two-
step Johnson process with an activation energy around 0.33 eV. The
simulation was performed using a prebuilt catalog constructed from
an earlier simulation, initially containing information about 9074
topologies. The simulation stalls when many new topologies must
be explored. The arrow marks the basin shown in detail in Fig. 9. In
that basin, the activation energy is under 0.3 eV. Two more basins are
encountered at 3.8 and 5.5 μs.

low-barrier events, the system manages to exit the basin only
when all those states have been explored. A sample trajectory
over 290 KMC steps is displayed in Fig. 10.

The wealth of structures and transition pathways found
in iron systems with SIA clusters is virtually impossible to
include in a catalog assembled a priori for standard KMC
simulations. In contrast, the self-learning k-ART program will
over the course of a simulation build a database of these
configurations and events, thus saving time once the system
revisits previous states. The presence of basins (i.e., groups of
states separated by low barriers) in these systems dictates the
use of an acceleration scheme. With bac-MRM, even such a
rich system becomes a tractable problem in KMC simulation.

C. Relaxation dynamics in amorphous silicon

As kinetic ART is an off-lattice method with self-learning
catalog building capabilities, it can also be used to study
relaxation of disordered materials on long time scales. There
have been previous applications of similar techniques to these
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FIG. 9. (Color online) Detail of Fig. 8 (KMC steps 350–413,
0.99 μs): After a series of two-step Johnson jumps, the system crosses
into an excited state at KMC step 235. Then a number of states
forming a basin are traversed. Shaded background indicates a basin
(oscillatory) motion. After an exit event, the system resumes its basin
trajectory, until another exit event leads it back to the ground state,
from where it resumes its two-step motions. The energy trajectory
passes through minima and saddle points alternately (minima marked
by crosses). During the basin motion, the system clock is hardly
moving.
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FIG. 10. (Color online) Trajectory of a tetra-interstitial cluster at
300 K in a 1024-atom cubic box over 290 KMC steps. Top: The
simulation and the computation time as a function of KMC steps.
Bottom: The evolution of the total energy, measured from the perfect
crystal, and of the the squared total displacement as a function of
KMC steps. The system makes several attempts to leave the ground
state basin, but falls back until, at KMC step 234, it succeeds. It then
moves through a sequence of excited states, before dropping back to
a different ground state basin, with the whole cluster diffusing to the
nearest neighbor site. Different background colors represent different
basins (white: outside of basin). As the barriers (shown as impulses
in the lower plot) are comparatively low, the clock advancement is
rather small. Only if a barrier exceeding the basin threshold is picked,
the KMC time step is noticeable. A significant share of the CPU time
is spent exploring the sequence of excited states between steps 234
and 250.
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systems, but these have suffered from limited sampling of
events [10,51].

As a test case, we looked at amorphous silicon. Like crys-
talline silicon, this allotrope of silicon is fourfold coordinated
with randomly oriented tetrahedra causing the loss of medium
and long-range order in the system. This model system has
been extensively studied with ART [14,52] and ART nouveau
[18,53] and constitutes therefore a well-controlled model.
Moreover, many fundamental questions remain regarding its
dynamical properties. For example, in spite of considerable
experimental efforts, the exact nature of defects responsible
for structural relaxation is still a matter of debate [54–57]. As
for many other disordered systems, only methods able to reach
experimental time scales will be able to offer a satisfactory
answer to these questions.

We start here with a well-relaxed 1000-atom a-Si con-
figuration with periodic boundary conditions generated with
the modified Wooten-Winer-Weaire procedure [58,59] and
a reparametrized version of the popular Stillinger-Weber
potential by Vink et al. [60] adjusted to describe appropriately
this allotrope. All atoms in the generated a-Si sample are
perfectly coordinated with a clean electronic gap [61] and
a good agreement with the experimental radial distribution
function [59].

For a disordered system, the advantage of recycling events
based on the local atomic topologies takes a lot of time
before becoming noticeable. For a well-relaxed 1000-atom
model of a-Si, for example, no two atoms share the same
topology and even after many thousands of events, topologies
encountered more than once are rare. A meaningful catalog
requires therefore the combination of many independent KMC
trajectories started from various initial configurations.

At first, since each atom has its own topology, the number
of initial events to be generated is very large. Successive
steps tend to be much less expensive and the number of
new topologies per step depends strongly on the amplitude
of the displacement during the previous KMC step. Small
displacements observed during flickers usually result in less
than 10 new topologies while diffusive events can generate up
to 140 new topologies in a single step.

The distribution of activation barriers is similar to the
one found in previous ART studies [18,53]. Although it is
continuous over a wide range of activation energies, the
kinetics is dominated by nondiffusive low energy barriers.
Contrary to crystalline systems, where a clear energy threshold
separates diffusive from nondiffusive events, it is necessary to
fix the basin threshold somewhat arbitrarily in the mean-rate
method. Here we chose a cutoff of 0.3 eV for a simulation
temperature of 300 K. Therefore, events associated with time
scale of 16 ns or less are averaged over and the internal
dynamics of these events is ignored. This is acceptable, as we
are interested in simulations on the time scale of microseconds
or more.

Figure 11 (bottom) shows the evolution of the total
configurational energy as a function simulated time for a
simulation of 3360 k-ART steps. Since we started from a
very well-relaxed configuration, the proportion of flickers is
important but the system still manages to relax by more than
6 eV over a 12 μs simulation. While the initial relaxation
with the modified Stillinger-Weber potential leaves the system
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FIG. 11. (Color online) Simulation of a-Si in a 1000-atom box
at 300 K. Top: The number of encountered topologies and the
computation time as a function of the simulation time. Bottom: The
evolution of the total energy and of the the squared total displacement
as a function of the simulation time. The simulation was started with
a catalog from an earlier simulation. The system flickers between
two neighboring states until it finds a way to relax further. This
leads to a sequence of configurations never seen before and the CPU
time needed per step increases with the number of new topologies to
explore.

perfectly coordinated, an average of 0.8 at.% defects are
created in a few KMC steps. This concentration is relatively
constant throughout the simulation. Moreover, almost all
the low barrier events involve coordination defects. Defect
migration events are hard to characterize since local atomic
motions can affect the existence of low energy defects up
to the third nearest neighbor distance. This can cause some
defects to disappear while creating new ones.

The 4 eV drop at 10 μs is initiated by a bond switching event
of two fourfold coordinated neighboring atoms with a barrier
of 0.28 eV. This allows for one atom to get rid of a highly
strained bond, resulting in a energy drop of 0.84 eV. This
event is then followed by a succession of 84 smaller relaxation
events involving mostly spontaneous creation or destruction of
low-energy coordination defects. The configuration eventually
ends up in a lower energy basin where flickers again dominate.
The average defect population goes from 0.8 to 1.4 at.% during
the entire process.

K-ART in a-Si can be compared, on short times, with molec-
ular dynamics. Using the MD software LAMMPS [62] with our
a-Si model, we launch a 10-ns simulation at 300 K with a time
step of 2 fs. At regular intervals, a configuration is frozen and
relaxed into the nearest local minimum using steepest descent
in order to compare with our k-ART simulation. Results (not
shown) confirm that almost no deformation takes place on
this short time scale and both MD and k-ART display atomic
displacement of the same amplitude.
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Total simulation time for this system is significant and
Fig. 11 (top) shows the evolution of simulation time as a
function of computer time for a code running on a single 2.66
GHz Intel Xeon X5550 CPU starting from a preconstructed
catalog. The use of a parallel version of the algorithm
coupled with a more extensive catalog is expected to reduce
considerably the computational efforts for this simulation.
Already, however, we see that k-ART can be a useful tool
for these complex systems.

V. CONCLUSION

In this paper we present in detail the kinetic ART algorithm,
a versatile self-learning on-the-fly, off-lattice kinetic Monte
Carlo method. This method couples ART nouveau [15], a
very efficient nonbiased open-ended algorithm for finding
transition states [21,22], with a topological classification of
events based on NAUTY, a powerful packaged developed by
McKay [16].

Kinetic ART constructs a reusable event catalog that
improves the efficiency of the algorithm over time. Events
are stored as generic events coupled to a given topology. To
fully include elastic deformations, the lowest-energy barriers
are separately relaxed to specific events to fully account
for geometrical and elastic deformations. By construction,
the algorithm also automatically identifies cases when the
topology does not correspond to a single geometry, ensuring
that the basic approximations are valid for all events. For
efficiency, k-ART also includes local force calculations,
allowing sublinear scaling with system size, and an exact
handling of flickers extended from the mean-rate method [30].
Other acceleration techniques, such as parallel handling of
event relaxation and generation, are also implemented in the
current version of the k-ART package.

To demonstrate k-ART’s versatility, we applied the algo-
rithm to three problems: vacancy-interstitial annihilation in
c-Si, interstitial diffusion in Fe, and relaxation of a-Si. Clearly
the algorithm, although slower than standard KMC, can handle
accurately complex systems with many tens of thousands
of topologies much faster than MD, opening the possibility
of studying problems that have long remained out of reach of
simulation.
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APPENDIX: THE MEAN RATE METHOD

Following Puchala et al. [30], the system is separated
in transient states and absorbing states. To determine the
probability to exit the basin to state x, we calculate the
transition probability matrix T, with components

Tji = Ri→j∑
k Ri→k

= τ 1
i Ri→j , (A1)

where Ri→j is the rate going from basin state i to basin state
j , and the summation is over all basin and exit states k. τ 1

i , the
reciprocal of the sum of all rates leaving state i, is the mean
residence time in state i each time it is visited. The occupation
probability vector of all basin states after in-basin jump m (and
before m + 1), �(m) is thus given by repeated application of
T to the initial occupation probability �i(0) = δis , where s is
the starting state. The sum of the occupation probabilities over
all possible number of jumps gives the average number each
basin state is visited:

�sum =
∞∑

m=0

Tm�(0) = (1 − T)−1�(0), (A2)

from which the mean residence time in basin state i before
leaving the basin can be calculated:

τi = τ 1
i �sum

i . (A3)

These residence times are then used to accelerate the basin exit
rates from basin state i to exit state j according to

〈Ri→j 〉 = τi∑
k τk

Ri→j , (A4)

with k summing over all basin states. The next KMC step
is then determined using standard KMC rules, using these
accelerated rates.

In contrast to the first passage time analysis (FPTA) [30,63],
the mean rate method is computationally much simpler, as it
requires a single matrix inversion to calculate the modified
rates, after which the ordinary KMC rules apply. This comes
at a cost: There is no correlation between the randomly
determined residence time and the selected exit state. Puchala
et al. find [30] that in measuring average quantities after many
steps, both MRM and FPTA yield the same results.
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