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Amorphous silicon under mechanical shear deformations: Shear velocity and temperature effects
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Mechanical shear deformations lead, in some cases, to effects similar to those resulting from ion irradiation.
Here we characterize the effects of shear velocity and temperature on amorphous silicon (a-Si) modeled using
classical molecular-dynamics simulations based on the empirical environment-dependent interatomic potential
(EDIP). With increasing shear velocity at low temperature, we find a systematic increase in the internal strain
leading to the rapid appearance of structural defects (fivefold-coordinated atoms). The impacts of externally
applied strain can be almost fully compensated by increasing the temperature, allowing the system to respond
more rapidly to the deformation. In particular, we find opposite power-law relations between the temperature
and the shear velocity and the deformation energy. The spatial distribution of defects is also found to depend
strongly on temperature and strain velocity. For low temperature or high shear velocity, defects are concentrated
in a few atomic layers near the center of the cell, while with increasing temperature or decreasing shear velocity,
they spread slowly throughout the full simulation cell. This complex behavior can be related to the structure of
the energy landscape and the existence of a continuous energy-barrier distribution.
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I. INTRODUCTION

The structural and dynamical properties of amorphous
silicon (a-Si) have been extensively investigated using
classical force fields,1–12 tight-binding,15–18 and ab-initio
simulations.13,14,19 Much attention, in particular, has been
devoted to the characterization of defects.12,20–31 In spite of
these efforts, the nature and role of defects in disordered ma-
terials is not fully understood and numerous questions remain,
especially with regard to relaxation. For example, the usual
definition of defects—such as vacancies and interstitials—
cannot be directly applied to disordered or amorphous ma-
terials: while threefold- and fivefold-coordinated atoms are
often taken as defect centers in a-Si, other medium-range
defects, such as strings of short or long bonds, might also
have to be considered, as shown recently by Drabold and
collaborators.32,33

We study here the role of defects with respect to relaxation
by examining the response of a-Si to plastic deformations.
In crystalline materials, where the phenomenon is well
understood, plasticity is attributed to defect nucleation or
dislocation motion;34–43 in disordered materials, the response
is harder to define structurally, as demonstrated by a number
of studies in systems ranging from metallic44 and polymeric45

glasses to granular materials46 and colloids.47 Helder et al.,48

however, have shown that, during irradiation with high-energy
heavy ions, a-Si deforms plastically in the same manner as
conventional glasses, i.e., defects, irradiation, and plasticity
are directly related in amorphous materials. It is this still im-
perfectly understood relation that motivates the work presented
here.

Following initial suggestions by Argon,49 it has been
proposed recently that plasticity is caused by collections of
shear transformation zones that operate as localized centers
for the deformations.44,50–53 In a-Si, these plastic deformations
are attributed to the presence of liquidlike particles52,53 asso-
ciated with fivefold-coordinated atoms. To verify these ideas,
elastic and plastic deformations in a-Si were investigated by

Talati et al.54 using classical molecular-dynamics (MD)
simulations based on the Stillinger-Weber7 and the Tersoff8

potentials; it was concluded that, even though the general
behavior of the stress-strain curves associated with elastic and
plastic deformations is similar to that for other disordered
materials, details as to the nature of the defect responsible for
plasticity depend on the particular potential used.

We revisit this question here using classical MD simu-
lations and the environment-dependent interatomic potential
(EDIP).5,6 Various points defects and their effects on elastic
constants have been characterized by Allred et al.,55 using
the EDIP potential.5,6 These authors have shown that the
elastic constants vary in a roughly linear fashion with defect
concentration up to ∼3%, in line with experiment, suggesting
that the EDIP is suitable for investigating the elastic and plastic
deformations in a-Si. Our simulations were performed using
the classical MD package (LAMMPS).56

Most previous studies of elastic and plastic deformations
in amorphous materials have been performed at 0 K or at low
temperature, with a focus on the disordering process. Here
we examine the situation in a-Si by investigating the system’s
response to variations in shear velocity and temperature, as
both parameters contribute, in their own way, to forcing the
system to overcome energy barriers and explore the potential-
energy surface; as mentioned previously, structural changes
are strongly correlated with imposed strain.54,57

This paper is organized as follows: In Sec. II, we describe
the details of our simulation model. In Sec. III, we present the
results obtained by applying mechanical shear deformations
at different shear velocities and temperatures. In Sec. IV, we
present the structural analysis as a function of shear velocity.
After a discussion (Sec. V) of our results, we will give our
main conclusions (Sec. VI).

II. COMPUTER SIMULATION MODEL

Classical MD simulations have limitations, but they are
unavoidable to simulate systems large enough to limit the
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impact of size effects. For the problem at hand, charges and
electronic effects should not play a direct role, and therefore
a description in terms of suitable classical interactions is
appropriate.

The EDIP functional form involves a two-body radial term
for bond-stretching interactions and a three-body angular term
for bond-bending interactions, and each of these depends
strongly on an effective coordination number Z. We have
chosen this potential for its ability to reproduce a wide range of
zero-temperature properties of Si, including elastic constants,
bulk crystal structures, and point defects6,55—in particular,
EDIP describes accurately the vacancy formation energy. This
potential has been used to study the ion-beam induced amor-
phization of crystalline silicon58,59 and the crystallization60–62

of a-Si starting from amorphous-crystalline interfaces.63–67

The melting temperature of crystalline silicon obtained
using EDIP is 1500 K, and it is 1200 K for a-Si. In both
cases, this is roughly 200 K below experimental values (1685
and 1420 K, respectively68). Both phases are therefore stable
or, at least, metastable in the temperature range investigated
here.

A. Sample preparation

Experimentally, a-Si can be obtained by laser-melting
and quenching, by chemical vapor deposition,69 or by ion
irradiation.70 Numerically, our models of a-Si are generated
using the modified Wooten-Winer-Weaire (WWW) bond-
switching algorithm, which can produce perfect fourfold-
coordinated random networks1,71 in good structural and
electronic agreement with experiments.71 A 1000-atom a-Si
cell was first constructed, then duplicated to obtain a cubic box
containing 8000 atoms. The latter was then annealed in NPT
(constant number of particles N, constant pressure P, and con-
stant temperature T) with periodic boundary conditions over
150 ns at 300 K so as to obtain a well-relaxed model of
amorphous silicon. The final structure was found to contain
less than 3% of defects (mostly fivefold-coordinated atoms),
the rest being perfectly fourfold-coordinated, in agreement
with the best finite-temperature models available in the
literature.

B. Procedure for mechanical shear deformations

The mechanical shear deformations on the 8000-atom a-Si
model are introduced as follows: the cell is first equilibrated
(at the target temperature—see below) with periodic boundary
conditions in all three directions, for at least 5 ns. Three
different regions are then defined, as shown in Fig. 1: an upper
and a lower “wall,” each containing 1000 atoms, and a region
of mobile or active particles; periodic boundary conditions are
now imposed only in the lateral (x and z) directions, while
surface atoms are fixed in the y direction. This procedure is
similar to that used by Mokshin et al.72 on single-component
Lennard-Jones amorphous systems. The thickness of the walls,
about 6 Å, is larger than the EDIP cutoff,5,6 thus ensuring that
all particles within the active region (∼40-Å-thick) share the
same physics.

The mechanical shear deformations are generated by
moving the walls at fixed shear velocity (shear rate) vs along
the shear direction (x). The shear velocity (vs) measures the

FIG. 1. (Color online) Snapshot of a typical configuration of the
8000-particle a-Si model. Mobile particles are positioned between
two parallel walls, each containing 1000 atoms, used for applying the
shear deformations (see text for more details).

speed of the deformation while the strain rate (ε̇) gives the
change in strain with respect to time and it corresponds to
the shear velocity divided by the distance between the walls.
In practice, the lower-wall position is fixed and only the
particles in the upper wall are moved by imposing a constant
displacement vs × h at every time step h (1 fs)—the wall
particles are otherwise frozen in place. The amorphous nature
of the walls ensures that crystal growth, if it occurs, is not
induced by the boundaries, as in the case of crystallization
studies using amorphous-crystalline interfaces.64–67 Note that
the cell is aged during 1 ns before applying the deformations to
ensure proper relaxation after releasing the periodic boundary
conditions along y.

The equations of motion for mobile particles are integrated
using the velocity Verlet algorithm. Since an additional force
is imposed in the shear direction (x), only the components in
the “neutral” y and z directions are considered for computing
and rescaling the velocities to constant temperature during
the deformation process. The pressure at time t is computed
from instantaneous atomic positions [−→ri (t), i = 1,N ] and
forces acting on the particles [

−→
Fi (t), i = 1,N ] using P (t) =

N
V

kBT + 1
3V

∑N
i=1

−→ri (t) · −→
Fi (t), with N the number of parti-

cles, V the volume, T the temperature, and kB Boltzmann’s
constant. Statistics such as potential energy and coordination
number were obtained at zero shear velocity and will be used
as reference for assessing the effect of the shear deformations.

The elastic and plastic deformations of materials are usually
analyzed in terms of stress-strain curves,54,57,73 where the strain
corresponds to the maximum displacement in the shear direc-
tion with respect to the distance between the two walls, which
is kept constant. We prefer to characterize the deformations in
terms of the potential-energy difference (PED) �E = Ep −
E0 , where Ep and E0 are the potential energies of sheared and
nonsheared systems; E0 is computed before switching on the
shear deformations. This analysis has the advantage of provid-
ing direct microscopic information and relates more readily to
structural changes during shearing. Structural properties such
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as radial distribution functions and the coordination number
will also be used to determine how the properties of a-Si are
affected by mechanical shear deformations.

III. SHEAR DEFORMATION RESULTS

In this section, we examine the effects of varying the shear
velocity and the temperature on the system’s structural disorder
and defect concentration.

A. Mechanical shear deformations at 300 K

We fix the temperature at 300 K and vary vs between 10−5

and 8 × 10−2 Å/ps. For all values of vs but the smallest,
simulations are run until a strain of 20% is reached; e.g.,
for a shear velocity of 10−2 Å/ps, the simulation time is
0.8 ns. For the lowest shear velocity (vs = 10−5 Å/ps),
because of computational limitations, we stopped at 12%
strain, corresponding to a simulation time of 500 ns. In all
cases, simulations are long enough for the plastic deformation
threshold—defined by the onset of irreversible deformations—
to be reached; this occurs in a-Si at a strain of about 10%. The
exact value of this threshold depends on the shear velocity, and
we found it to increase with vs , in agreement with previous
results (see Ref. 57, for example).

It is well known that stress appears immediately following
a shear deformation. At short times or small strain values,
the stress increases almost linearly and saturates at high
strain values. This constant stress corresponds to the sheared
steady-state character of plastic deformations. This general
behavior is common for polymeric materials,45 metallic
glasses,44 colloids,47 and amorphous materials.48,52–54,57 The
response of the system to mechanical shear deformations can
be analyzed, in general, in terms of stress-strain curves.54,57

As mentioned above, we prefer to use the PED between
sheared and nonsheared cells, as it provides a direct and simple
description of the microscopic structural deformations that
take place under shear deformations.

Figure 2 shows (a) �E, (b) the internal pressure as a
function of strain for different shear velocities, and (c) �E

higher strain values using a shear velocity of 8 × 10−2 Å/ps
(arrows indicate the direction of increasing shear velocity).
Evidently, changes in the potential energy are a manifestation
of structural rearrangements that have taken place with respect
to the initial, unstrained model. Thus, mechanical shear—
and therefore strain—increases the potential energy, i.e., the
disorder, of the system (cf. also Ivashchenko et al.57).

Changes in the potential energy as a function of shear take
place over two different regimes. For small shears, a quadratic
behavior is observed, associated with elastic and reversible
deformations; the quadratic nature of the energy is independent
of the rate at which the strain is applied, as one can see from
the overlap of the curves corresponding to different shear
velocities. The point at which the system crosses over to the
second, high-strain regime, however, does depend on vs ; the
larger vs is, the longer the elastic regime persists. This behavior
is perfectly echoed in the pressure—a larger vs allows the
system to reach a much higher negative pressure before plastic
deformations are forced. The potential-energy maximum also
corresponds to a stress maximum in the stress-strain curves
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FIG. 2. (Color online) (a) Potential-energy difference and
(b) pressure difference between the sheared and the nonsheared
system at 300 K as a function of strain, for shear velocities in the
range 10−5 to 8 × 10−2 Å/ps. The potential energy of the nonsheared
system (−4.3707 eV/at) is used as reference to calculate the PED.
The arrows refer to the direction of increasing shear velocities. (c)
Potential-energy difference for higher strain values using a shear
velocity of 8 × 10−2 Å/ps. The inset zooms on the low-strain
values.
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or the yield stress (not shown). This behavior is common
for elastic and plastic deformations of polymeric,45 metallic
glasses,44 and amorphous materials.73

The onset of plastic deformations is characterized by an
overall relaxation of the system, as we observe in Fig. 2(a).
The higher the yield stress (defined by the pressure, for
example), the larger the relaxation; for the smallest vs ,
10−5 Å/ps for example, there is very little relaxation after
the plastic deformation peak is reached. We note, however,
that after an initial drop, the potential energy increases again,
but at a relatively slow rate. It would eventually saturate to
a steady-state level, beyond the reach of our simulations,
which corresponds to the plasticity regime associated with
a flowing steady state, as one can see in Fig. 2(c). In
this simulation, performed with a significantly faster shear
velocity, the potential energy saturates within the run time,
indicating that the system has reached the flowing steady state
and therefore its maximum disorder. The inset of this figure
shows the details for strain values up to 1.0. For all shear
velocities considered here, the mean value of the potential
energy in the plastic steady state is higher than its value
before shear deformations are applied. In other terms, the
system exhibits an irreversible plastic deformation leading to
increased internal strain, as in the case of metallic and silica
glasses under high-energy irradiation.74,75 As for irradiation,
the mechanical shear deformations lead to the formation of
new defects in a-Si; this will be discussed in Sec. IV B.

In the case of plastic deformations, the mean value of the
steady-state potential energy increases with vs , as can be seen
in Fig. 2(a)—the curves for different values of vs are almost
parallel, shifted to lower energies for smaller shear velocities.
In all cases, we observe a drop in the potential energy after the
crossover from elastic to plastic deformations. This suggests
that, at this point, the system has to overcome an energy
barrier to launch a relaxation cascade. The height of this barrier
decreases with increasing shear, and the probability of crossing
it at lower strain increases for systems under slower shear rates,
explaining the observed behavior. Because of the Boltzmann
factor governing the jump rate, the transition is also pushed to
lower strain values with increasing temperature. For example,
the minimum strain value is found to lie between ∼2% for the
lowest shear velocity and ∼8% for the highest in our 300 K
runs, while according to Talati et al.,54 it can reach 20% at 0 K.
Clearly, temperature plays an important role on the yield-stress
value.

At 300 K, the PED between sheared and annealed a-Si is
about 0.02 eV/at for vs = 10−5 Å/ps and 0.08 eV/at for vs =
8 × 10−2 Å/ps: evidently, the structural changes taking place
in a-Si are strongly correlated to the applied shear velocity.
While it was not possible to apply a slower strain rate, these
results suggest that the steady-state PED from the annealed
state would tend to zero as the strain rate decreases. This
question will be discussed in more detail in Sec. V.

The shear-induced disorder leads to the formation of
higher-density regions associated with higher-coordinated,
“liquidlike” particles. This would explain the increase in
amplitude of the negative pressure observed in Fig. 2(b) for
different shear velocities. For very small strain, the pressure
decreases harmonically and reaches a minimum before settling
to a steady-state value associated with the plastic-deformation

regime, which is strain-independent (as in the case of the
PED). For larger strain, the pressure does depend on the shear
velocity: the change is 2 GPa for vs = 8 × 10−2 Å/ps, while it
is only 1 GPa for vs = 10−3 Å/ps. The plastic deformations are
accompanied by a noticeable drop in the pressure amplitude.76

This behavior does not appear to be caused solely by the
unusual phase diagram of silicon, where the liquid is denser
than the solid, as it is also observed in metallic glasses and is
rather due the concentration of defects observed in the plastic
regime (see below).

B. Deformations at fixed shear velocity: Temperature effects

In the previous section, we saw that a higher shear velocity
leads to a larger deformation energy in the plastic deformation
regime at a given temperature. In this section, we discuss the
role of temperature on the elastic and plastic properties of
a-Si at fixed shear velocity. Very few such studies have been
reported on disordered systems, and most studies on a-Si were
carried out at low temperature—0 or 300 K.77 The effects of
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FIG. 3. (Color online) (a) Potential-energy difference (PED) as
a function of strain at fixed shear velocity vs = 10−3 Å/ps for
temperatures (from top to bottom) 10, 100, 200, 300, 400, 500,
600, 700, 800, 900, 1000, 1100, and 1200 K. For clarity, the
high-temperature curves (800–1200 K) are reproduced in (b) on a
finer scale.
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temperature and shear velocity in amorphous polymers and
Lennard-Jones glasses were investigated by Rottler et al.,73

who found that they are akin to redefining the time scale
for structural modifications: these parameters modify the
properties of the glassy state by altering the aging process and
inducing rejuvenation. At low temperature, atomic diffusion in
glassy materials is completely local and negligible. Increasing
the temperature or the strain facilitates the possibility for
particles to escape from the cage formed by surrounding
particles, thus accelerating diffusion and relaxation.

To isolate the specific effects of temperature, we varied
the latter between 10 and 1200 K at fixed shear velocity
vs = 10−3 Å/ps, during 8 ns for a total strain of 20%, allowing
the system to age during at least 5 ns at each temperature.
Figure 3(a) shows the strain dependence of the PED as
a function of temperature. For temperatures up to 900 K,
the low-strain harmonic regime is again observed, and this
is followed by an elastic to plastic transition leading to a
steady state. The steady-state PED decreases rapidly with
temperature, from ∼0.12 eV/at at 10 K to ∼0.04 eV/at at
300 K, to less than 0.01 eV/at at 900 K. Increasing temperature
is therefore similar to reducing the strain rate.

The results are different for temperatures above 900 K,
on which we zoom in in Fig. 3(b): rapid, very small
(∼0.01 eV/at) energy fluctuations, but no saturation, are
observed: clear plastic deformations can no longer be defined
and shear effects are completely compensated by thermal
relaxation.

Interestingly, the steady-state PED curves are all nearly
parallel, a behavior also observed by Rottler et al.73 on stress-
strain curves at different temperatures. At low temperatures,
the potential-energy increase is essentially controlled by the
shear-imposed displacements, and we observe almost no self-
diffusion; at high temperature, in contrast, our results reveal a
competition between the stress imposed by shear deformations
and temperature-enhanced self-diffusion that favors annealing.

IV. STRUCTURAL MODIFICATIONS DURING SHEAR
DEFORMATIONS

We discuss in this section the microscopic changes that take
place under shear, focusing on the radial distribution function
(RDF), g(r), that provides a global picture of structural
changes, and local coordination, which we can relate to
solidlike or liquidlike behavior.

A. Radial distribution functions

Figure 4(a) shows the average RDF computed for different
strain rates at 300 K. To correct for boundary effects, the local,
atom-specific RDF is normalized by the fraction of the surface
of the sphere surrounding it, 4π r2, that fits into the system.
Thus, the normalization factor depends on the distance of the
particle from the walls in the y direction. Because deformations
in the elastic regime do not lead to permanent damage, we
focus here on the plastic steady-state regime and average over
the last 200 configurations at the maximum strain of 20%.

Overall, very little difference between the various RDF’s
is observed: the positions of the first and second peaks are
essentially unchanged and match those of the annealed model.
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FIG. 4. (Color online) Radial distribution function (a) as a
function of shear velocity at 300 K, and (b) as a function of
temperature at vs = 10−3 Å/ps. The arrows indicate the direction
of increasing shear velocity or temperature (see text).

While the width of the first-neighbor peak increases slightly,
most changes take place near the second-neighbor peak (cf.
inset): as the height of this peak decreases, a new structure
appears at shorter distances (∼2.8 Å), which develops as
the shear velocity is increased. This feature is related to the
appearance of fivefold-coordinated atoms, as already shown
in Refs. 52 and 53: plastic deformations are associated with
the presence of higher-coordination liquidlike particles, so that
the coordination number increases with shear velocity, which
confirms the tendency of mechanical shear deformations to
increase disorder.

At fixed shear velocity (vs = 10−3 Å/ps), the new structure
formed by shear deformation is more pronounced at lower
temperatures, as one can see from the inset to Fig. 4(b),
where we present the RDF’s at different temperatures. As
temperature increases, the system can more easily compensate
for the applied strain, which leads to a less pronounced
structure between the first and second peak, until it vanishes
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completely at high temperature, thus confirming that the action
of shear diminishes as temperature increases. The fact that the
amplitude of the new structure increases with shear velocity
and decreases with temperature signals, again, the existence
of a competition between shear velocity and temperature as to
their effects on the structure.

B. Coordination number and defects fraction

We examine now the evolution of the number of coordi-
nation defects under shear, counting atoms within a cutoff
of 2.8 Å which corresponds to the minimum between the
first- and second-neighbor peaks in the annealed-cell RDF.
We focus on fivefold-coordinated atoms since the number
of other coordination defects remains very small during the
whole process: the initial system contains ∼97% of perfectly
coordinated atoms, less than 3% of fivefold-, and only 0.06%
of threefold-coordinated atoms.

The evolution with strain of the population of fivefold-
coordinated defects is displayed in Fig. 5 for the various shear
velocities considered, at 300 K. While the behavior of these
curves is similar to that of the PED and the pressure presented
earlier, with well-defined elastic and plastic regimes, it differs
in two notable ways: First, there is no decrease in the number of
defects at the yield stress, but only a sharp flattening of the
curve. This suggests that, although the concentration of defects
definitely increases in the elastic regime, there is no significant
structural reorganization. At the elastic to plastic transition,
even though some energetic relaxation takes place at the onset
of plasticity, the defects created do not anneal. Second, the
population of defects for the smallest shear velocity (10−5

Å/ps) evolves along three regimes: a very small elastic region
for strains below 0.01, followed by a steady increase of the
concentration of defects associated with a fall of equilibrium,
and finally a transition to the steady-state plastic regime
at a strain of ∼0.03. For slow enough shears, therefore, it
appears as though, in contrast to crystalline systems, the
perfectly elastic regime disappears: amorphous silicon shows a

0 0.05 0.1 0.15 0.2
Strain

0.00

0.05

0.10

0.15

0.20

0.25

F
ra

ct
io

n 
of

 5
- 

fo
ld

 a
to

m
s

8x10
-2

4x10
-2

2x10
-2

1x10
-2

8x10
-3

4x10
-3

2x10
-3

1x10
-3

1x10
-5

(Å/ps)

FIG. 5. (Color online) Fraction of fivefold-coordinated atoms as a
function of strain. The different curves correspond to shear velocities,
as indicated. The arrow indicates the direction of increasing shear
velocity.

continuous distribution of energy barriers leading to structural
rearrangements, and any amount of shear can move the system
from one minimum to another.12,78

Shear affects the structure very significantly. For the highest
shear velocity considered, 8 × 10−2 Å/ps, the proportion of
fivefold-coordinated defects increases from as little as 3%
initially to 23% in the steady-state regime; it falls to about
12% upon decreasing the strain rate by a factor of 80 (vs =
10−3 Å/ps), and is only ∼8% for the very lowest shear velocity
investigated (10−5 Å/ps). Thus, even at 300 K, the system
manages to anneal itself. Even for the highest defect levels,
other defects (e.g., threefold- and sixfold-coordinated atoms)
remain rare, well below 0.5%. Interestingly, these results,
obtained using the EDIP potential, are in good agreement
with those obtained by Talati et al. using the Stillinger-Weber
potential.54

C. Localization of plastic deformations: Defect distribution

The propagation of plastic deformations can be studied
by monitoring the proportion of defects—here fivefold-
coordinated atoms—throughout the cell. To this end, we divide
the system into 12 layers along the y direction and calculate
the concentration of defects as a function of strain; the first and
last layers (the walls) are not considered since they are used
for applying the strain.

The results are shown in Fig. 6 for three different shear
velocities at 300 K. For all cases considered we find that, at
low strain, in the elastic regime, the distribution of defects
is low but uniform across the system; at the elastic-to-plastic
transition, however, strong inhomogeneities appear along the
y direction. At high shear velocities, 10−1 Å/ps [Fig. 6(c)],
fivefold defects form near the center of the system and reach
a very high concentration (>30%) in the steady-state regime:
plastic deformations are highly localized in these central layers
and the three to four layers near the walls remain largely
unaffected. At smaller shear velocities, plastic deformations
propagate through a wider portion of the cell, reaching the full
width of it for vs = 10−5 Å/ps [Fig. 6(a)]. For the latter case, at
low strain, defects first appear in the layers closest to the walls
(layers 2 and 11) before propagating across the system. In
the plastic regime, the defect density increases almost linearly
with the distance to the walls, with all layers affected by plastic
deformations.

With a direct comparison of the figures [Figs. 6(b), 6(c), and
6(d)] or by computing the distribution of the defects fraction
across the y directions, we found that the width of the region
affected by shear deformations—where the defects fraction
increases significantly—is almost the same for two different
systems. According to these observations, the localization of
the shear deformations in a few layers is not size-dependent,
at least for systems larger than 8000 particles.

The effect of temperature can be assessed in Fig. 7, where
we plot the corresponding results at temperatures of 500, 700,
and 900 K, using an intermediate shear velocity 10−3 Å/ps.
While defects are localized in the few layers near the middle
of the structure at 300 K [Fig. 6(c)], the distribution broadens
with temperature: all layers are affected by the shear at 700
K and the distribution becomes almost flat at 900 K, even at
small strain.
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FIG. 6. (Color online) Fraction of fivefold-coordinated atoms at
300 K as a function of strain and layer index; (a), (b), and (c)
correspond to shear velocities (a) 10−5 Å/ps, (b) 10−3 Å/ps, and
(c) 10−1 Å/ps, at 300 K. The configurations are divided into 12
layers along the y direction; layers 1 and 12 are not shown as they
correspond to the frozen walls. Part (d) corresponds to a system of
16 000 particles and a shear velocity of 5 × 10−4 Å/ps. The number of
layers is 22.

 0
 0.02
 0.04
 0.06
 0.08
 0.1
 0.12
 0.14
 0.16
 0.18
 0.2

 0
 0.01

 0.02
 0.03

 0.04
 0.05

 0.06
 0.07

 0.08
 0.09  3

 4
 5

 6
 7

 8
 9

 10
 11

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

 0.2

5-fold

(a)

Strain
Layer index

5-fold

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0
 0.01

 0.02
 0.03

 0.04
 0.05

 0.06
 0.07

 0.08
 0.09  3

 4
 5

 6
 7

 8
 9

 10
 11

 0
 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

5-fold

(b)

Strain
Layer index

5-fold

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.1

 0
 0.01

 0.02
 0.03

 0.04
 0.05

 0.06
 0.07

 0.08
 0.09  3

 4
 5

 6
 7

 8
 9

 10
 11

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 0.1

5-fold

(c)

Strain
Layer index

5-fold

FIG. 7. (Color online) Fraction of fivefold-coordinated atoms as
a function of strain and layer index, at (a) 500, (b) 700, and (c)
900 K, for a shear velocity of 10−3 Å/ps.

V. DISCUSSION

In agreement with the results observed on stress-strain
curves of the elastic and plastic deformations of different
materials,44–47,50,52–54,57,77 the system’s response to strain can
be divided into three regimes. At low strain, the system
responds with strain-independent elastic deformations, as ob-
served in the PED and the pressure, for example. Although the
number of local defects, here overcoordinated atoms, increases
during this phase, a large fraction of these are reversible. The
second regime, at intermediate strain, depends on the shear
velocity and is associated with the elastic to plastic transition.
Here, the absolute values of the PED and the pressure reach a
maximum, then fall off to smaller values following a cascade of
bond rearrangements that reduces the strain buildup, the drop
being larger for faster shear rates and lower temperatures.
Surprisingly, however, this is not accompanied by a similar
drop in the number of defects. As the energy is released,
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the defects are therefore stabilized by irreversible atomic
repositioning. The third regime corresponds to steady-state
plastic deformations and occurs at high strain values. In this
regime, the various microscopic and thermodynamic quantities
are essentially strain-independent. For the pressure, the plastic
regime rapidly reaches a plateau after the breakdown. For the
potential energy, the convergence is somewhat slower and the
steady-state value is only slightly lower than the maximum at
the elastic-to-plastic transition. The curves are also shifted to
lower energies with decreasing shear velocity or increasing
temperature.73 This contrasts with the microscopic density
of fivefold defects, which shows a steady increase and is
not yet converged for most values of the shear velocity and
temperature at a strain of 0.2.

Our results on the effects of shear and temperature allow
us to better characterize the spatial inhomogeneities involved
in the response to shear. While defects form almost uniformly
across the atomic layers in the elastic phase, plastic defor-
mations are concentrated within a narrow region near the
center of the box at low temperatures and high shear rates,
and the fraction of liquidlike fivefold-coordinated atoms in
these layers reaches almost 40%, in line with the results of
Refs. 52 and 53. Indeed, the cell is breaking into two parts with
an almost fluid interface between them. Such a sharp break
is costly, however, and is imposed by kinetic considerations:
the relaxation time is too short to permit a global response
of the system to the external perturbation. The system is,
in effect, frozen, and stress can build up significantly, which
can only be released by a size-wide rearrangement, creating
the observed sharp break. This inhomogeneity explains why
the radial distribution function is only slightly affected by an
average defect concentration of more than 20%.

As the temperature rises or the shear velocity decreases, the
relaxation time becomes comparable with the shear rate and the
response to perturbation is spread to larger and larger regions,
preventing a large build-up characterized by a significant
increase in potential energy or defect concentration. And while
fivefold-coordinated atoms remain the main type of defects by
which this response takes place, it is no longer possible to
speak of localized centers of deformation, since the whole
system is affected in the plastic regime.

The relation between temperature and shear velocity can
be seen in Fig. 8, which shows the evolution of the maximum
PED and the mean value of the PED in the plastic deformation
regime as a function of shear velocity and temperature; the
data are extracted from Figs. 2 and 3. For the PED, we observe
almost the same power-law relation between the shear-velocity
and the energy at the yield stress and in the steady-state plastic
regime, in both cases with an exponent of � 0.18 in a wide
range of shear velocities between 10−3 Å/ps and 8 × 10−2

Å/ps. For the smallest shear velocity, the power-law relation
seems to be less reliable and the effects of shear appear to be
more important than might be expected. Since thermal effects
are included in the reference potential energy, this suggests that
there is no critical rate for which thermal energy completely
obliterates the effects of shearing, even though plasticity will
spread to always larger fractions of the system.

In the bottom panel of Fig. 8, a similar power-law behavior
is observed for temperatures between 150 and 900 K, with
an exponent of −0.9. Again, even at high temperature (but
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FIG. 8. (Color online) Log-log plot of the potential energy
(maximum and mean value in the steady state for high strain values)
as a function of (a) shear velocity at fixed temperature (300 K), and
(b) temperature at fixed shear velocity (10−5 Å/ps). The inset in panel
(b) shows the same curve in a linear scale.

below melting), the effects of shear are not fully compensated
but are strongly reduced. At low temperature, the power-law
relation breaks down because the bonding energy introduces
a hard threshold on the amount of strain that can be stored in
the system.

The origin of these power-law relations can be related to
the energy landscape structure of the system. Because the
activation energy necessary to cross a barrier is uncorrelated
with the energy difference between the top of the barrier and
the final minimum, only the shape of the forward activation-
energy barrier distribution is important.78 From numerical
calculations,78 it is known that this activation-energy barrier
distribution at T = 0 K is a continuous function that can be
fitted to

GFB(E) = AE exp

{
−

(
E − 〈

Erel
FB

〉)2

2σ 2
FB

}
, (1)

where E is the barrier energy, A is a normalization factor, and
Erel

FB and σFB are two parameters that depend on the system
and the degree of relaxation. At finite temperature, for a well-
relaxed sample, barriers below kBT are already consumed.
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The shearing here effectively increases the system’s energy,
thus decreasing the height of available barriers, and, from
there, increases the crossing probability at a given temperature.
Because energy barriers of any height may exist, it is possible
for the system to accommodate shearing at least partially, at
any temperature, as long as the shearing rate is slow with
respect to the attempt-to-jump frequency.

VI. CONCLUDING REMARKS

We have investigated the properties of amorphous silicon
subject to external mechanical shear deformations using
classical MD simulations with the environment-dependent
interatomic potential (EDIP). The shear deformations are
introduced by moving one wall in the shear direction.72 We
find that both energetic and structural properties of the system
depend strongly on the shear velocity and the imposed strain, as
well as the temperature at which the deformations are applied.
At low temperatures and for all shear velocities investigated,
we observe a systematic increase in disorder associated with an
increase in the fraction of coordination defects, in agreement

with the results of Refs. 54 and 73. Interestingly, the shear-
induced energy can be written in terms of a power-law of both
temperature and shear velocity: �E ∝ vα

s T −β , with α � 0.18
and β � 0.9. Finally, we observe a very strong dependence of
the spatial distribution of defects on these two quantities. For
low temperatures or high shear velocities, defects are localized
in a narrow region in the middle of the cell. As the temperature
increases or the shear rate slows down, this region becomes
wider until it covers the whole system. This effect is due to
the existence of a continuous distribution of activation energy
barriers that allows the system to relax at any temperature
provided that it has ample time to do so, as determined by the
shear rate.
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