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Diffusion of carbon in iron is associated with processes such as carburization and the production of steels.
In this work, the kinetic activation–relaxation technique (k-ART) – an off-lattice self-learning kinetic
Monte Carlo (KMC) algorithm – is used to study this phenomenon over long time scales. Coupling the
open-ended ART nouveau technique to generate on-the-fly activated events and NAUTY, a topological
classification for cataloging, k-ART reaches timescales that range from microseconds to seconds while
fully taking into account long-range elastic effects and complex events, characterizing in details the
energy landscape in a way that cannot be done with standard molecular dynamics (MD) or KMC. The dif-
fusion mechanisms and pathways for one to four carbon interstitials, and a single vacancy coupled with
one to several carbons are studied. In bulk Fe, k-ART predicts correctly the 0.815 eV barrier for a single C-
interstitial as well as the stressed induced energy-barrier distribution around this value for 2 and 4 C
interstitials. For vacancy–carbon complex, simulations recover the DFT-predicted ground state. K-ART
also identifies a trapping mechanism for the vacancy through the formation of a dynamical complex,
involving C and neighboring Fe atoms, characterized by hops over barriers ranging from �0.41 to
�0.72 eV that correspond, at room temperature, to trapping time of hours. At high temperatures, this
complex can be broken by crossing a 1.5 eV barrier, leading to a state �0.8 eV higher than the ground
state, allowing diffusion of the vacancy. A less stable complex is formed when a second C is added, char-
acterized by a large number of bound excited states that occupy two cells. It can be broken into a V–C
complex and a single free C through a 1.11 eV barrier.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Properties of iron–carbon alloys (Fe–C) have been investigated
extensively over the years, as these are crucial in carburization,
steels and processes such as metal dusting corrosion [1]. However,
in spite of years of studies, the microscopic details of C diffusion
are still not fully characterized in part because of the time limits
of standard atomistic simulations. On the one hand, flexible
approaches, such as molecular dynamics, are limited to the
micro-second time scale. On the other, long-time methods such
as standard lattice kinetic Monte Carlo simulations [2,3] are con-
strained to lattice-based displacements that fail to capture the full
diversity of diffusion mechanisms as well as elastic deformations.
The recent development of on-the-fly off-lattice kinetic Monte
Carlo methods such as the kinetic activation–relaxation technique
(k-ART) [4–6] lifts those limitations and allows us to map these
processes in details.

K-ART is an off-lattice kinetic Monte Carlo method with on-the-
fly catalog building capabilities which properly handles elastic
deformations and complex local environments such as ion-
bombarded Fe [5,7] and Si [8], and amorphous Si [9]. As shown
in a recent k-ART study of vacancy aggregation in Fe [10,11], even
relatively simple systems require extensive cataloging and the
exact handling of elastic effects on both energy minima and barri-
ers to properly describe diffusion and aggregation kinetics in bcc Fe
over experimentally-relevant time scales.

Until now, most numerical studies of interstitial C atom
diffusion in Fe have used empirical MD [12–14], object KMC
[15,16] and static DFT [17–21] to complement experimental
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results [22–28]. For instance the behavior of carbon–carbon (C–C)
and carbon–vacancy (V–C) systems in iron has been studied using
DFT by Domain and Becquart [29] who showed that interactions
between two or more C interstitials or between C and self-
interstitials are mainly repulsive, contrary to previous predictions
by Johnson et al. [30]. These interstitials are trapped by vacancies,
however, forming stable vacancy–C complexes. Each vacancy can
bind up two C atoms. The complex becomes energetically unstable
when three or more C atoms are present, a result that was corrob-
orated by other DFT work [17]. These simulations suggest that C
interstitial diffusion takes place through jumps between octahe-
dral sites, with the barrier located at the tetrahedral sites. This
mechanism would remain valid for V–C complexes, as C atoms
migrate from one octahedral site to the next in one or two steps.
In spite of these studies, there remains a considerable uncertainty
regarding the magnitude and form of the migration path over long
time, especially when it comes to the unbinding of the V–C, for
which the precise diffusion mechanism is still lacking [12].

Effects of stress on these barriers have also retained attention.
Recently, Tchitchekova et al. introduced a method called Linear
Combination of Stress States (LinCoSS) to capture the effects of
simple-heterogeneous uniaxial and shear stresses on the diffusion
barrier of one C in Fe [31]. Energy barriers as a function of either
uniaxial traction/compression and shear stress are determined
with the Climbing Image-Nudge Elastic Band method (CI-NEB)
and the EAM potential [32,33], they range from 0.7 to 0.9 eV for
uniaxial stresses and from 0.75 to 0.83 eV for shear stresses of up
to 3 GPa. Beyond these quantitative effects, pure shear could also
move the saddle point position away from the tetrahedral site.
Effects of internal stresses induced by the presence of more than
one C atom in the barrier energy are still open, however.

Using k-ART with the ab initio-derived Becquart Fe–C potential
[32,33], this paper addresses these issues and clarify the long-time
diffusion mechanisms for C in Fe and the effect of internal stress in
the presence and absence of vacancies. The paper is organized as
follows: The computational method and potential used are
described in Section 2. Section 3 is dedicated to validating the
use of k-ART through the characterization of the diffusion proper-
ties in simple Fe–C systems as a function of temperature: one Fe
vacancy and one C interstitial. In Section 4, we turn to more com-
plex systems with two and four C interstitial atoms. In Section 5,
systems with vacancy–carbon interactions are analyzed. Finally
the conclusions are given in the last Section 6.

2. Methodology

2.1. An overview of k-ART

The main tool used here is the kinetic activation–relaxation
technique (k-ART), a generic kinetic Monte Carlo algorithm
designed to explore the energy landscape of complex atomistic
systems, through the use of an off-lattice on-the-fly approach [4–
6]. This method makes it possible to study the Fe–C kinetics on
long time scales without restriction on the atom positions, exactly
taking into consideration the full elastic effects.

While details of k-ART implementation can be found elsewhere
[5,6], we summarize here its basic elements. At the beginning of
each KMC step, the local environment surrounding each atom is
evaluated using a topological approach and analyzed using the
NAUTY package [34,35]. If the topology has already been visited,
events associated with it are recovered from the catalog and placed
in a KMC tree, otherwise, the catalog is updated by launching a ser-
ies of ART nouveau searches to identify the diffusion mechanisms
associated with this topology. Once the catalog is fully up-dated
and the tree is completed for the current atomistic configuration,
events are ordered according to their rate, defined as
ri ¼ me�Eb;i=kBT ð1Þ
where the attempt frequency is fixed at m ¼ 1013 s�1 and Eb;i is the
barrier energy (also known activation energy) for event i, defined
as the energy difference between the saddle point (sad) and the ini-
tial local minimum (min), Eb;i ¼ Esad;i � Emin;i (in what follows index i
is suppressed for simplicity).

All events that have a probability of at least 0.01% of occurring
are fully reconstructed and reconverged. In this manner, low barri-
ers are fully relaxed according to actual geometry and, therefore,
exactly include short and long-range elastic effects. When this is
done, rates are recomputed according to the real environment-
specific environment, an event is chosen and the clock is brought
forward according to KMC rules.

Since KMC simulations treat each step in series, its dynamics is
dominated by the lowest energy barriers. To gently handle the
small barriers that are responsible for flickering states (or states
separated by small barriers and that do not allow the system to
evolve), we use the basin-autoconstructing mean rate method
(bac-MRM) which computes an on-the-fly statistically correct ana-
lytic solution of the connected flickering states and their escape
rate as the energy landscape is explored [36,5].

2.2. Potential

We use an embedded-atom method type potential for describ-
ing the Fe–C system. Fe–Fe interactions are handled by the inter-
atomic potential developed by Ackland and Mendelev [37], a
potential that provides high agreement with DFT calculations.
Fe–C interactions, developed by Becquart and collaborators, are
also adjusted on ab initio calculations [32] with a special focus on
the correct description of the activation barriers in order to ensure
the right kinetics for C diffusion [33]. This potential has been used
with success to model the effect of the stress field of an edge dis-
location on carbon diffusion [38], the formation of carbon Cottrell
atmospheres in bcc iron [39] as well as the elastic constants of the
martensite [40]. Becquart’s potential describes C–C interactions
only through the embedded function, leaving aside short-range
covalent C–C interactions. This approximation is valid for diluted
solutions such as the ones studied here where C are not in first-
neighbor positions and interaction through common Fe atoms or
long-range elastic effects [32].

The potential is linked to k-ART package through the LAMMPS
library, which is used as the force-calculation engine [41,42].

2.3. Simulation details

Simulations are based on a 8a0 � 8a0 � 8a0 1024 Fe cubic bulk
crystal with a0, the lattice constant for bcc Fe crystal, set to
a0 ¼ 2:8553 Å. C atoms and Fe vacancies are added according to
the details of each simulation. All systems are run at temperatures
of 300, 600, 900, 1100, and 1200 K to assess thermal effects on
kinetic trajectories. As is normally the case in KMC simulations,
the temperature is only used to choose the transition states accord-
ing with the transition state theory [43,44] and all simulations are
performed in the canonical ensemble with the volume set to
ensure P ¼ 0 at T ¼ 0 K. The relevance of this approximation is
examined in Section 3.3, where we look at the effect of thermal
expansion on minimum and migration barriers.

Because of the small number of defects, we use here the total
square displacement, SDðtnÞ, at time step tn defined as

SDðtnÞ ¼
XN

i¼1

riðtnÞ � rið0Þð Þ2; ð2Þ

where N is the number of particles and rið0Þ is the initial position of
atom i at KMC step zero. No normalization to N, which would
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provide the mean square displacement, is performed, since diffu-
sion is totally dominated by the motion of the defects or their
neighboring atoms, with the majority of the atoms remaining at
their initial position.

For each simulation, the ground state (GS) energy is defined as
the lowest energy minimum identified during the run, EGS. For clar-
ity, all energies are given with respect to the GS, i.e.,
EðtnÞ ¼ E0ðtnÞ � EGS. Given the simplicity of the systems studied,
EGS is reproduced for all simulations on the same system, irrespec-
tive of the temperature or the initial state, unless noted. Following
references [29,32], the binding energy is computed as

EðA1 ;...;AnÞ
bind ¼

Xn

i¼1

EðAnÞ � ½EðA1 ;...;AnÞ þ ðn� 1ÞEref �; ð3Þ

where Eref ¼ �4109:294 eV is the energy of the perfect crystal. Thus

for two C interstitials the binding energy is given by E2C
bind ¼

2Eð1CÞ
GS � ½Eð2CÞ

min þ Eref �, while for V–2C complex, it is given by, EV2C
bind ¼

2Eð1CÞ
GS þ EðVÞ

GS � ½EðV2CÞ
min þ 2Eref �. A positive Ebind means attraction.

3. Characterization of the Fe–C potential and validation of k-
ART application to this system

To assess the efficiency of k-ART with the Fe–C EAM potential
and establish point a comparison, we first look at the diffusion
properties of two well-studied simple systems: a single Fe vacancy
and a single C interstitial.

3.1. One Fe vacancy

As a first validation test, we look at the diffusion of a single Fe
vacancy (V) (see Fig. 1). We will understand here a V as the absence
of an atom from the a lattice site when compared to a perfect crys-
tal. With this definition we consider that a vacancy V is created
when an atom moves by more than 0.5 Å far from its lattice point,
this definition is possible since KMC simulations do not include
thermal displacements and focus on local minima and transition
states. The formation energy, defined as the vacancy produced
when removing one atom from the system, is defined as
½EGS � ð1023=1024ÞEref � ¼ 1:721 eV, with the EAM potential.
Vacancy self-diffusion takes place between the {110} lattice planes
through first-neighbor jumps, crossing an energy barrier, Eb, of
Fig. 1. Activation-energy (left, blue symbols) and squared displacement self-
diffusion (right, red line) as a function of time for a single Fe vacancy in a bcc crystal
at 300 K, over 1446 KMC steps. The self-diffusion is computed as a total square
displacement of the Fe atoms (dashed red line). The blue dots indicate the selected
activation barriers. Here, the vacancy diffuses in two steps: from a GS to metastable
state at Emin ¼ 0:549 eV by crossing a barrier energy of 0.640 eV (higher blue dots),
from this state to a new GS site by crossing a barrier energy of 0.091 eV (lower blue
dots). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
0.640 eV. This barrier leads either directly to an equivalent or to
an intermediate interstitial position at Emin ¼ �0:549 eV above
the GS (at EGS ¼ �4103:560 eV). From this state a second barrier
with energy of Eb ¼ 0:091 eV brings the system back into a new
GS (see Fig. 2). The 0.640 eV barrier is in agreement with the pre-
viously identified value [11,45], and the 0.091 eV barrier connect-
ing the metastable state to the GS is close to the 0.12 eV value
reported for both this Fe potential (named aA04) and a variation
labeled A07 in [45]. The differences can be attributed to the con-
vergence methods and the criteria used to find the saddle points.
This split mechanism is not observed in DFT calculations and is
considered to be an artifact of the EAM potential [45].

Note that while the 1.07 eV barrier corresponding to the third-
neighbor split vacancy, already observed in Ref. [11], is present in
the event catalog, it is never selected in our simulations due to its
low probability.

We will return back to this system when we analyze one V–C
interaction and diffusion properties in Section 5.1.
3.2. One C interstitial

We now turn to the characterization of the energy landscape for
a single C interstitial.

In simulations running for up to 48000 events, k-ART with the
EAM potential is found to reproduce the relatively simple results of
previous MD simulations. In particular, k-ART predicts correctly
the dominant diffusion energy barrier, Ebarr ¼ 0:815 eV, in agree-
ment with the value found by MD simulations [12,33]. The same
mechanism is observed at all temperatures. In Fig. 3, we plot the
C self-diffusion at 600 K and the activation energy Eb as a function
of time, as well as the single-valued energy barrier. Results for
higher temperature simulations show the same basic physics.

In the GS at EGS ¼ �4119:352 eV, the C atom occupies the octa-
hedral interstitial position. The C diffusion pathway goes through
the tetrahedral site, as the transition state, in agreement with
ab initio calculations [29,46].
3.3. Effects of thermal expansion

As stated above, KMC simulations typically neglect the effect of
thermal expansion on energy barriers. The impact of this approxi-
mation is considered here for the self-vacancy and one C
interstitial.

We perform zero pressure MD calculations with the EAM
potential to establish thermal expansion for this material. Between
0 and 1200 K, the zero pressure lattice parameter changes with
temperature, as aðTÞ � a0 ¼ 1:4914� 10�8TðT þ 792:008Þ. Accord-
ing to this equation, the changes of the lattice parameter and vol-
ume with respect to their 0 K values are 0.436% and 1.314% at
600 K, and 1.249% and 3.793% at 1200 K respectively.

Using this formula, we relaunch a series of KMC simulations
with temperature-corrected volumes with both the self-vacancy
and one C interstitial. Effects on total minimum and migration
energies are given in Fig. 4 as a function of T (bottom scale) and
aðTÞ (top scale). While, as expected, the effect of expansion on total
energy for this 1024-atom system is on the eV scale, the important
quantities are the migration barrier energies for both V and C,
which change by less than 0.02 eV between 0 and 600 K, and
0.05 eV between 0 and 1200 K. This change is, as expected, in
opposite directions as lattice expansion stabilizes free volumes
such as vacancy while it does the opposition of interstitials, but
remains small in both cases.

As we see, thermal expansion effects on energy barriers are
small (�6% as maximum) and on the order of thermal energies in



Fig. 2. Top: Schematic representation of the two possible transitions observed for a single Fe vacancy (square) into the planes {110}. Diffusion is done between nearest-
neighbor atoms via a ! c, crossing a barrier of 0.640 eV (with no change in initial and final energies of the system), or via a split-step a ! b ! c, leading to a metastable state
b with Emin ¼ 0:549 eV. From b ! c the system returns to a GS a site crossing a smaller barrier of 0.091 eV. Bottom: 3D view of the same configurations.

Fig. 3. Activation-energy (left, blue symbols) and squared displacement diffusion
(right, red line) as a function of time for a 48909 KMC step single carbon interstitial
run in a bulk system at 600 K. The migration energy of C is found to be 0.815 eV.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 4. Change of the EbðTÞ left, ðEminðTÞ � Eminð0ÞÞ right, and lattice parameter aðTÞ
top, with temperature T for systems: one vacancy V and one C atom. The variation
of the lattice parameter follows a trend curve of quadratic form
aðTÞ � a0 ¼ 1:4914� 10�8TðT þ 792:008Þ. For the V system the energy varies as
Emin � EGS ¼ KðaðTÞ � a0Þ2 with K ¼ 7008:4 eV/Å

2
, and Eb ¼ �20:5652aðTÞ2 þ
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this system. They can therefore be neglected for the relatively
simple configurations we are examining in this work.
119:3463aðTÞ � 172:4669. For the C system Emin has the same form with
K ¼ 7046:6 eV/Å

2
, and Eb ¼ �7:8536a2ðTÞ þ 43:664aðTÞ � 59:8299.
4. Diffusion for systems with many interstitial C atoms

Having established that the single C-interstitial diffusion is well
reproduced with k-ART/EAM, we consider in this section the effect
of increasing the number of C impurities on the barrier energies.
Here, we look, more specifically, at the diffusion mechanisms for
dilute systems with two and four C interstitials, i.e. in the context
where C-atoms are non in first-neighbor bonded-configurations.
Results for higher temperatures are only discussed when they dif-
fer from those at 600 K.

4.1. Two C interstitials

We start by describing the GS configuration for the two C inter-
stitial system. As shown in Fig. 5a, in the GS, the two C atoms are
positioned in adjacent cells and separated by a distance of

ffiffiffi
3

p
a0

with an attractive binding energy of 0.045 eV with respect to two
isolated C interstitials. This configuration has been previously
observed in MD and DFT [29,32].

While the two carbon atoms are far apart, we recover the
0.815 eV characteristic of the single C diffusion, Figs. 6 and 7 show
a rich behavior when the two C atoms come nearby each other, as
they interact through elastic deformations of the Fe lattice (see, for
example, at �28 ls). In Fig. 6, we report the C-diffusion and the
migration energy as a function of time for the full simulated time
interval. While the 0.815 eV barrier, that characterizes the single
C diffusion, dominates, fluctuations around this value demonstrate
the effect of C–C interactions. A more detailed analysis is given in
Fig. 7, which also shows the C–C distance evolution, dC—C , as a func-
tion of KMC step, calculated for folded and unfolded trajectories,
that is, using, or not, the nearest-image convention for computing
the C–C distance. At each KMC step, the unfolded distance gives us
the C–C separation of the same two C atoms as they move through-
out any of the image boxes, while the folded distance provides the
closest separation between two different C atoms (as we have two
C atoms per volume box). These quantities are also compared to
the square root of SD as well as to the migration energies and
the energy at the local minima during the trajectory.

The complete distributions of activation energies and local min-
imum energies at the initial and the final states are plotted in the
three histograms of Fig. 9. To follow the various events, each local
energy state, binned with an energy resolution of 10 meV, is given
a specific color in the top graph. This coloring makes it possible to
identify the visited saddle (middle graph) and final configurations
from each bin. For example, if the system is at state with initial
energy�0.09 eV above GS (EGS ¼ �4129:455 eV) (cyan), the system



Fig. 5. Ground state configuration corresponding to the global minimum, EGS , for 2C atoms. The two C atoms (red) are in the top (gray area) and bottom planes, separated by a
distance of diagonal length of

ffiffiffi
3

p
a0. 1 and 2 represent another possible symmetric configuration of the GS. (b) Flickering states 3 and 4 for the C atom marked with 1 (see text

for more details). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Self-diffusion and migration energy for a Fe crystal with a two C interstitials
at 600 K as a function of time for a 3814 KMC step run. The self-diffusion is
computed as the total square displacement of the Fe atoms (dashed red line). The
oscillations in the barrier energy (blue solid line) show the presence of different
local minima. The lowest values of migration energy are metastable states in which
the two C interact at short distance. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Evolution of the C–C distance, dC—C , (folded and unfolded, left axis), the
square root of the squared displacement (SQ, left axis), the barrier energy Ebarr and
the energy at the local minima, Emin at 600 K as a function of KMC step (right axis).
Grey strips represent the interval in which C–C are interacting and the dotted
horizontal line is the box size: 8a0. This corresponds to time interval from 0 to
28:37 ls in Fig. 6.

Fig. 8. Binding energy, Ebind (left axis), and distance for the two closest C atoms
(dC—C folded, right axis) as a function of KMC steps at 600 K.
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can transit to a final state with energy �0.05 eV by crossing a bar-
rier of 0.55 eV. Now if this state is taken as the initial one (pink),
the system moves back by crossing a barrier of 0.59 eV.
Overall, we observe three diffusion regimes for the two C sys-
tem. The dominant regime, associated to the state in green, at
Emin ¼ 0:04 eV above the GS, corresponds to the diffusion of iso-
lated C atoms, crossing a 0:815� 0:05 eV barrier (with the error
calculated as the half of the bin width of 10 meV).

The second regime, corresponding to the cyan and pink bins,
corresponds to interacting trapped C atoms; these excited states
are observed 215 times in the simulation, representing around
6% of the visited states. Trapping occurs when the two carbons
are between 3.40 and 4.54 Å of each other (corresponding to
roughly second and third neighbor position with respect to the
bcc lattice in Fig. 5b), with repulsive C–C binding energies of
�0.045 eV and �0.011 eV respectively. In that range, the carbon
atoms can occupy a number of similar metastable positions,
0.055 eV and 0.092 eV above the GS, separated by barriers of
0.554, 0.591 eV (jumps from state 3 to 4 in Fig. 5b are also
observed). At 600 K, the characteristic trapping time is about
0.03 ls. The GS being only �0.04 eV below the separated C, this
state is favored at 600 K for entropic reasons and, the ground state
is visited only 11 times (over 3814 KMC steps) during the 80 ls
run, while the first excited state, Emin � 0:02 eV above the GS, is
sampled 18 times. This explains why, as demonstrated by the
folded distance dC—C at 600 K, as shown in Fig. 8, the C atoms gen-
erally move independently from each other.

The third regime, finally, is observed when the two carbons are
between 7 and 10 Å from each other. At this distance, elastic defor-
mations do not affect significantly the local energy minima, but
they affect the energy barrier by as much as ±0.05 eV as seen in



Fig. 9. Histogram of initial, barrier and final energies for 2C interstitials. Each event
– characterized by initial, saddle and final energies – is represented with the same
color and accumulated in bins. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 10. Migration energies (left axis) and diffusion (right axis) for 4C in interstitial
position as a function of time at 600 K for a 2799 KMC step run.

Fig. 11. Ground state of the 4C atom system. (a) top view and (b) 3D view. Th

Fig. 12. Top: Barrier energy distributions for five temperatures for the 4C system,
with a comparison to the 2C at 600 K. Bottom: Same for the final energy
distribution. The respective lowest energy found is subtracted to each data, for 2C
is �4129.455 eV while for 4C is �4149.596 eV, and they are separated by 20.161 eV.
The bin separation or resolution in Eb and Emin is equal to 1 meV.
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Fig. 9, with the specific barrier depending on the details of the rel-
ative position and the direction of diffusion.

Overall, therefore the C–C complex is too weakly bound to move
as a whole and the kinetics, although affected by the presence of
nearby C atoms, is fully controlled by single C diffusion.

4.2. Four C interstitials

Here we consider four C atoms randomly placed in interstitial
positions in the Fe crystal and let to diffuse at various tempera-
tures. Fig. 10 shows the diffusion and energy barriers at 600 K.

In that figure each consecutive pair of C atoms have the same GS
shown in Fig. 5a for the 2C complex. According to Eq. (3), the GS
has a binding energy of 0.105 eV, compared with the two isolated
C atoms in their GS, and 0.195 eV, compared to four isolated C. The
4C system is characterized by a large number of states with almost
degenerate energy where the GS is a symmetric configuration of 4C
as shown in Fig. 11.

In view of the small binding energy for four C, diffusion is dom-
inated by the single C barrier (0:817� 0:023 eV), but with a
broader energy distribution than for the 2C system due to the more
complex elastic interactions associated with a higher number of
impurities. This is evident in Fig. 12, that presents the distributions
of the Eb (top) and Emin (bottom) for various temperatures for the
4C system and compares with the similar distributions for the 2C
e distance between the two C, indicated by a line, is
ffiffiffi
3

p
a0 Å, as in Fig. 5a.



(a)

(c)

(b)

Fig. 13. (a) Jumps of one of the Fe atoms around V at 600 K. (b) Top plane h001iand perspective views of double Fe jumps in a cube with four cells. Orange Fe atoms jump
from 4 to 3 and from 2 to 1 (squares are empty crystal sites). In (c) after V moves to the corner, C jumps from position 0 to the edge on position 5, and into the plane around V;
position 6 is also possible. The C distance from V is 0:365a0; this position is the global minimum: Emin ¼ 0.
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system at 600 K. Because of the large entropy associated with the
presence of numerous states of similar energy, the GS is not found
in the simulations at 300 K and above; it is generated, however, at
a temperature of 50 K.

Fig. 12 also allows us to see that while trapping, associated with
two C coming nearby, is significant at lower temperature, with
clear peaks for the intra-trap barriers, at 300 K, this attraction
becomes negligible at 900 K and above as entropic gain overcomes
the small binding energy.

The introduction of more C atoms induces elastic stresses into
the Fe crystal, generating a more complex energy landscape with-
out, however, any new dominant mechanism. The wide energy-
barrier distribution associated with elastic effects due to the pres-
ence of nearby C atoms could be one to the reasons why several
values for Eb are observed experimentally between 0.8 and 0.9 eV
approximately [22–27].

In this system as in the case of 2C complex, coordinated dis-
placements with four or two C atoms are not observed.

5. Diffusion for systems with vacancy–carbon interactions

5.1. One C in substitutional position

We now look at the effect of substituting one Fe atom in the lat-
tice by a C atom, forming a carbon vacancy complex (V–C) that has
been extensively studied using empirical and DFT approaches
[12,17,29].
As demonstrated in the literature, a C at a Fe-vacancy lattice
point is metastable and, as a consequence, the C atom moves away
from it, in an interstitial position, at 1.042 Å fromvacancy site, form-
ing a bound state with the self-defect. Indeed, starting with the C in
substitutional position, the first KMC event systematically moves
this atom over a small barrier, Eb � 0:013 eV, ð0:365� 0:001Þa0
away from the vacancy site along of one of the x-axis, into the GS,
1.449 eV below the initial energy, in excellent agreement with
results found using DFT [29]. The effect of the vacancy is therefore
to bring the C away from the octahedral interstitial site, inside of a
cube with the vacancy at the center, (see Fig. 13a).

Doing so, the C stabilizes into a complex that hinders the V
diffusion [12]. This stability is particularly evident a room temper-
atures, as corroborated by the k-ART simulation done at 300 K. This
simulation reaches a simulated time of 120000 s (� 33:3 h) in
15000 steps and shows a V–C system oscillating between nearby
positions, but without diffusion (not shown). As the temperature
rises, the V–C pair can move either together, as a complex, or can
be decoupled, leading to an independent diffusion pathway for
both defects. Those effects are observed for simulations at 600 K
and above, and are described as follows.

Fig. 13 shows the possible bounded moves for Fe and C around
the complex with V-neighboring Fe atoms marked from 1 to 4.
With a vacancy nearby, the Fe atoms mostly sample interstitial
positions. Single Fe jumps, from GS to an interstitial position
0.463 eV higher, are characterized by a 0.714 eV forward and a
0.251 eV reverse barrier. Two Fe atoms can also make a collective



Fig. 14. Roots of the square displacements for vacancies SDV (folded), for Fe atoms
SDFe and for a C atom SDC (unfolded), as a function of time. dmin

V—C is the minimum V–
C distance at each step, the lowest value is 0:364a0. The horizontal dotted line is the
size of box 8a0 ¼ 22:8 Å given as a reference.

(a)

Fig. 15. Top: C (green lines) and Fe (blue line) self-diffusion (right axis) compared to
triangles, left axis) at 600 K (a) and 900 K (b). Bottom: zoom on two intervals (gray areas i
are measured with respect to the ground state. (For interpretation of the references to c
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move to interstitial positions by crossing a 0.552 eV barrier (see
Fig. 13b). This motion involves Fe atoms positioned on the same
diagonal (direction h111i); it is represented by orange atoms, with
the empty lattice sites represented as open squares, in Fig. 13.
While this event leads to a net mass diffusion, as shown, for exam-
ple, by the square Fe displacement in Fig. 14a, it leaves the V–C
complex unmoved.

Oscillations (or periodic jumps inside the cell) are also observed
for the bound C atom with barriers of either Eb ¼ 0:413 eV or
Eb ¼ 0:508 eV (Fig. 13c), in agreement with DFT values of 0.4 eV
and 0.6 eV [29]. Eb ¼ 0:413 eV corresponds to a situation in which
there is an Fe atom at interstitial position (as e.g. Fe at position 1,
close to V), allowing C to jump to another octahedral position
before the Fe goes back to its initial position (position 0 in
Fig. 13a and c). The Eb ¼ 0:508 eV is associated to the same C jump,
but with all Fe atoms in their initial position.

These moves correspond to the most frequent oscillations
observed in Fig 14 for C. This figure presents the evolution of the
V–C system at four different temperatures, from 600 to 1200 K. It
shows, as a function of time (note the change in time scale as a

function of temperature), the minimum V–C distance, dmin
V—C , as well

as the root of the square displacement for Fe atoms (SDFe), C (SDC ,
unfolded) and the vacancy (SDV , folded). The root of the square dis-

placement is taken to facilitate comparison with dmin
V—C and the

folded SDV . Using the definition of Section 3.1, a V is created when
no atom can be found at a distance of 0.5 Å or less from the lattice
site. At each time step, therefore, one, two or three V may be pre-
sent and the SDV ðtnÞ is computed as an average over the number of

vacancies found that time step and can be compared with dmin
V—C to

verify the binding of the V–C complex as a function of the
temperature.

We first observe that the V–C complex unbinding is a relatively
rare event. At 600 K, C diffusion can be observed around 515 ls and
800 ls (green line in Fig. 14 a), and after 0.8 ls at 900 K (Fig. 14b).
At 600 and 900 K, the V–C complex moves mostly as a whole, as is

shown by dmin
V—C in the top two panels of Fig. 14. V–C diffusion is also

seen in Fig. 15, where these specific regions are highlighted in the
(b)

the change in energy, Emin (red circles, left axis) and to barrier energies, Eb (black
n top) in which C or V diffuse independently. Energies in the bottom panels (a and b)
olor in this figure legend, the reader is referred to the web version of this article.)



Fig. 16. (a) Initial configuration with 2C inside a vacancy site, after the first energy minimization the system moves to the configuration (b). From (c) the GS, the system may
oscillate with state (d). In (e) a second possible configuration, the system can oscillate with state (f). In (f) dashed circles represent another degenerated local configuration in
which atoms 1 and 2 of the system can move from (e).

Fig. 17. In left the binding energy, Ebind , as a function of KMC steps at 600 K. In right
the C–C distance, dC—C and the root of the SDC .

Fig. 18. Migration energy (blue line, left axis) and SDFe (green line, right axis) and
SDC (red line, right axis), for a V–2C system as a function of time at 600 K for a 3373
KMC step run. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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top panels and show in more details, as a function of KMC step, in
the bottom panel, where we clearly see the dissociation of the V–C
complex. At 600 K, this happens for a few steps (as seen around
step 3745 in Fig. 15a).

At 900 K and above, the dissociation is more evident. It can be

easily observed at 1200 K, for example, from dmin
V—C in Fig. 14, that

V and C are decoupled most of the time. At this high temperature,
the V–C dissociation is crucial for diffusion: as the system decou-
ples, the vacancy moves rapidly across the crystal before it is
trapped again by C. V–C complex movement is not a schematic
process, i.e., a defined path between two GS configurations cannot
be predicted, as it can be deduced when comparing bottom plots of
Fig. 15a and b. The V–C complex kinetics can be understood by
looking at specific jumps such as the one presented in the right
hand side bottom plot of Fig. 15b. After oscillating for 1.1 ls
around the V–C complex GS, the system crosses a �1.5 eV barrier
at KMC step 4219, leading to the dissociation of V–C. This brings
the system into an energy state about 0.8 eV above GS, freeing
the V that can move across the crystal, with events characteristic
of the simple V diffusion, crossing the box boundary to finally be
trapped again by the C image at step 4293 when the system
returns to the global minimum again. As a whole, therefore, the
V–C complex diffusion from one bound GS to another is character-
ized by an overall energy barrier of 1.5 eV. This energy is confirmed
through the use of the statistically exact bac-MRM approach [5],
which allows us to repeat this diffusion process while solving sta-
tistically for the intermediates steps. With such a high dissociation



Table 1
General properties of C and V for the systems studied using kART.
Eref ¼ �4109:294 eV is the energy of the perfect crystal. For 2C and 4C, the error is
the standard deviation in the convergence or, in the case of V–C, the width of the
distribution for various similar pathways (see bottom Fig. 15a and b).

System Eb ðEGS � Eref Þ
C 0.815a �10.058
2C 0:816� 0:009 �20.161
4C 0:817� 0:023 �40.427
V 0.640b 5.734
V–C 1:5� 0:02c �5.155
V–2C 1.114d �15.614

a Same value of Refs. [33,12].
b Same value of Refs. [11,45].
c Total barrier for complex diffusion or splitting.
d Barrier to decouple one C from complex.
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barrier, V–C complex diffusion is a rare event with a characteristic
time scale of hours at 300 K, microseconds 900 K and nanoseconds
at 1200 K (for instance, in Fig. 14 can be identified two periods of
200 ls and 600 ls at 600 K that reduce to 0.2–0.8 ls at 900 K).
5.2. Two C around of a vacancy (V–2C)

According to DFT, when a second C is added to the previous sys-
tem, the two C atoms move and bind inside a cell in the vicinity of
the V, as shown in Fig. 16a, in agreement with the computed pre-
diction of Domain et al. [29], which states that a vacancy can bind
to up to a maximum of two C atoms. This result is corroborated by
further computations [17] that show that V–C systems are energet-
ically favorable for systems up to two C, with the two C atoms
moving inside the vacancy and forming a covalent C–C bond.

Diffusion mechanisms for two nearby not bonded carbon atoms
have not been characterized however, even though these are of
fundamental interest in low-concentration C environments. Here,
we focus on this situation in which a V interacts with 2C atoms
beyond first-neighbor distances.

Simulations on this system show that in the first KMC step (just
after energy minimization), starting from the two C into the
vacancy site, the C atoms separate with one moving to the edge
of cell (see Fig. 16b). Latter and depending of the temperature, after
some KMC steps, the V–2C system moves to one of two possible
configurations (shown in Fig. 16c and e). One of them is the
unbounded GS, which is found in all the simulations and shown
in Fig. 16c, with an energy EGS ¼ �4124:908 eV. Interesting, the
Fe atom (the orange marked with 2, close to the V) oscillates
between the GS and the position shown in Fig. 16d representing
a mechanism by which the system stabilizes. We also observe a
V split at the GS (as well as in other configurations as, e.g., in
Fig. 16e). Although this splitting has some resemblance with the
splitting mechanism observed in Fig. 2 for the case of one V diffu-
sion, in those cases the Fe atom does not move into the lattice posi-
tion during the oscillations, as can be seen in Fig. 16d and e. The
configuration shown in Fig. 16e happens frequently with oscilla-
tions to two possible degenerated transition states, as shown in
Fig. 16f.

At 600 K, no Fe or C diffusion is observed, although the system
decouples over short periods of time, as seen in Fig. 17 in the 1600–
2007 KMC-step interval. That figure also gives the C–C binding
energy calculated according to Eq. (3). In fact displacement of the
V–2C complex is not observed at any of temperatures used. For
the V to move, one of the two carbons must move away, with a bar-
rier energy of �1.114 eV, (measured from the GS). Once this hap-
pens the system stabilizes to a new set of local minima around
�0.4 eV above the GS with the decoupled C moving into the crystal.
Since the C diffusion barrier, at �0.81 eV, is much smaller than the
1.5 eV necessary to break the V–C complex, our simulations are
dominated by the first mechanism. The coupled system (at least
as shown in Fig. 16e and f) is observed for a period of �120 ls.
After the system goes to visit new states by crossing divers barriers
with small time steps that bans the observation of diffusion pro-
cess, as seen in Fig. 18 around �120 ls or KMC step �1600 in
Fig. 17.

Simulations at 900 K to 1200 K show the same mechanisms
with, of course, more frequency dissociation: decoupling time for
one C is reduced to �20 ns at 900 K and �0.35 ns at 1200 K), allow-
ing for the observation of single C diffusion over the simulated
time.
6. Summary and conclusions

Using k-ART we characterize the diffusion mechanisms associ-
ated with C in the Fe–C system. Comparing with previously pub-
lished results, we show that k-ART correctly recovers MD
observations such as the energy barriers of 0.815 eV for one C
and 0.640 eV for V diffusion in Fe. More complex systems are also
analyzed and a number of new results are found for C diluted sys-
tems and summarized in Table 1.

For 2C interstitials, a global minimum energy with a C–C dis-
tance separation of �

ffiffiffi
3

p
a0 is found, in agreement with previous

MD and DFT studies. C–C interactions also produce a rough land-
scape at small distances, with two metastable bound states sepa-
rated from the GS with barriers of 0.55 eV and 0.59 eV. At longer
distances, although C atoms diffuse by crossing barriers with ener-
gies similar to that for one C, elastic deformations due to the pres-
ence of a second C induce a distribution around the Eb ¼ 0:816 eV.
This distribution increases as C atoms are added, which helps to
explain the variety of barrier energies observed experimentally.
These distributions are more affected by increasing the number
of C atoms than by changing the temperature.

The introduction of a vacancy in the presence of a C atom cre-
ates a stable V–C complex, that moves as a whole at low-
medium temperatures. At 300 K, for example, the V–C complex is
stable for periods of time of the order of hours, at 600 K diffusion
of the coupled V–C complex, with a 1.5 eV barrier, is observed
around 515 ls and 800 ls, while it dissociates above 900 K. In this
latter case, V and C diffuse with a barrier energy close to that of the
isolated defects until they pass close to each other and get trapped,
with a lifetime of ps at 1200 K. In general, dissociation and diffu-
sion of separated V and C take place through several steps, by
climbing a number of small barriers in the surface energy that
sum up to 1.5 eV, explaining the slow overall diffusion.

As in the case of V–C system, a V–2C complex in conditions
where 2C are beyond first-neighbor distance is also created. It is
associated with a large number of almost degenerate bound
excited states that occupy two cells. This complex is less stable
than the V–C complex and a single C unbinds with a 1.11 eV
barrier, while in contrast to the V–C, displacement of the V–2C
complex is not observed. This mechanism dominates the dynamics
in our simulations.

Overall, this work shows both the strength of the kinetic
Activation–Relaxation Technique for mapping out complex energy
landscapes and identifying the relevant kinetic and the richness of
the C-diffusion mechanisms in Fe. With the applicability of the
method demonstrated, further work is currently underway for
the effects of grain boundaries on defect diffusion.
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