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ABSTRACT

Accurate empirical potentials for the simulation of magnetite Fe304 and nickel-ferrite NiFe;O4 spinel systems are
of fundamental importance for understanding their structural stability. To better understand how existing
empirical potentials for Ni-Fe-O systems describe the spinel physics, we perform comparisons of some of the most
important bulk properties. Elastic constants, lattice parameters, energies and Debye temperatures are computed
and compared with previously published data of density functional theory (DFT) and experiments found in the
literature. We find that all the potentials predict the spinel geometry well whereas there are discrepancies in bulk
properties. The MEAM becomes unstable at high temperature for NiFe204, although it gives the best prediction of
static properties at zero temperature whereas under induced pressure or high temperature, Buckingham types
offer more stability. In general, for static properties and if computational speed is required —and in the case of
Fe304 no distinction between normal or inverse is demanded— MEAM should be preferable. However, if dy-
namics at some temperature and specific ordering are important, Buckingham types, although more computa-

tionally expensive, should be used.

1. Introduction

The study of spinel ferrites is important from a physical and chemical
point of view [1]. Beyond their fundamental importance, they are used
for several technological applications in catalysis, corrosion, adhesion at
metal-oxide interfaces in composite materials, materials for preventing
impurity adhesion, and identifying possible roles in spintronic devices
and other new technologies, etc. [2]. Among those, spinel ferrites such
as trevorite — also known as nickel-ferrite NiFe;04 (henceforth NFO) —
and magnetite Fe304 (henceforth FO) are of special interest because of
their magnetic and electrical properties and possible applications to
spintronics [3,4], among others. In terms of current applications,
magnetite is one of the most important ferrimagnetic materials for in-
dustrial applications such as data storage, while trevorite have possible
applications in the fabrication of antennas and batteries [5,6,7,8,9].
Beyond those, spinel structures have potential applications in

Abbreviations: NFO, NiFe,04; FO, Fe304.
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permanent magnets, microwave absorbers, chemical sensors, biomedi-
cine, etc. [10,11].

Both NFO and FO present a spinel structure of the form AB,04 (Fd 3
m, no. 227) [12], with a unitary cell that counts 56 ions, where O ions fill
32 anions O-sites while cations (Ni or Fe) fill 8 tetrahedral A-sites and 16
octahedral B-sites. In normal spinels, A-sites are filled with A-ions and B-
sites with B-ions whereas inverse spinels represent structures where A-
sites are filled with B-ions and B-sites are filled randomly with A-ions
and B-ions. Experimentally, the Mossbauer spectroscopy is one of the
most reliable methods to determine the iron cation and anion distribu-
tion. High resolution X-ray diffraction can also determine the distribu-
tion as well as the geometry of spinels using the Rietveld refinement
[13].

Due to the large unit cell and long-range interactions, the theoretical
characterization of these materials, including defect diffusion, extended
defects, migration and surface energies, and more, requires handling

Received 1 February 2022; Received in revised form 26 June 2022; Accepted 8 July 2022

Available online 19 July 2022
0927-0256,/© 2022 Published by Elsevier B.V.


www.sciencedirect.com/science/journal/09270256
https://www.elsevier.com/locate/commatsci
https://doi.org/10.1016/j.commatsci.2022.111653
https://doi.org/10.1016/j.commatsci.2022.111653
https://doi.org/10.1016/j.commatsci.2022.111653
http://crossmark.crossref.org/dialog/?doi=10.1016/j.commatsci.2022.111653&domain=pdf

O.A. Restrepo et al.

Table 1

Potentials found for Ni-Fe-O systems and tested with spinel ferrites NFO and FO.

There are three versions of 1NN-MEAM: Ohira’s papers [2,18] use, p =
2

pom, alternatively Baskes [39] proposes p = p,v/1 +T, which is tested

here with Ni or Fe or both; O always uses p = p, (for details see Section 2

14+eT
below).

Spinel ferrite NFO Magnetite FO

1. Buckingham (Buck-1 params) [14].
2. Buckingham (Buck-2 params)

1. Buckingham (Buck-3 params) [17].
2
2. 1INN-MEAM-1 (For Fe,p = pom)

[15,16].
3. Buckingham-Morse (Buck-Morse [2].
params) [17]. 3. 1INN-MEAM-2 (For Fe,p = pyv/1+T)

[2,39].
4. EAM-SM (Embedded atom method
Streitz-Mintmire). Unstable under

4. 1NN-MEAM-1 (For all p =

2
—) [2,18].
p°1+e*1)[ ,18]

5. 1NN-MEAM-2 (For Ni, p = minimization [19].
poVI+T) [2,39]. 5. Tersoff (Unstable with magnetite,
6. 1INN-MEAM-3 (For, Ni, Fe, p = useful for other allotropes) [24].
povV1+T) [2,39]. 6. Shell model [26]. (Not used here).
7. EAM-SM (Embedded atom method 7. 2NN-MEAM with Ohira’s parameters

Streitz-Mintmire). Unstable under for Fe-O (no good spinel bulk prop-
minimization [19]. erties) [21,2].

8. 2NN-MEAM with Ohira’s parameters 8. EAM + Charge Equilibration (not
for Fe-0O, Ni-O (no good spinel bulk used here) [72]
properties) [21,2].

systems counting many hundreds to many thousands of atoms and more,
which make them unsuitable for ab initio approaches. It is therefore
necessary to turn to empirical potentials, which must be able to describe
accurately the physics involved. A review of the literature reveals only a
handful of potentials that could be suitable for molecular dynamics
(MD) or kinetic Monte Carlo (KMC) simulations. Yet, no comparison
regarding the range of applicability of these potentials is available,
which limits progress in this field.

For trevorite NFO we consider the following potentials: Buckingham
with two parameterizations [14,15,16], Buckingham-Morse [17] and
the modified embedded atom method potential with first nearest-
neighbors interactions (INN-MEAM) parametrized by Ohira [2]. We
also test two density functions proposed by Baskes [18]. There are other
potentials for Ni—Fe—O systems but these are not appropriate for NFO
or FO spinels. For instance, the charge transfer ionic-embedded atom
method potential for the O—Al—Ni—Co—Fe [19] has been tried, but is
not considered here as we find that it does not predict stable spinels.
Also, Lee’s web [20] page offers some parameterizations with the 2NN-
MEAM formalism where 2NN means including second nearest-neighbors
interactions and the corresponding bibliography for pure systems like
Ni, Fe, O and mixed Fe—Ni [21]. However, parameters for Ni—O and
Fe—O bonds are not given and using Ohira’s parameters for these

Table 2
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binaries, we do not recover the correct structure after minimization,
even though MEAM is designed to fit to experimental parameters for
mixed types Fe—Ni, Fe—O and Ni—O. In recent papers [22,23], Lee’s
group proposed an interesting formalism where they combine 2NN-
MEAM with a charge equilibration (Qeq) concept to overcome short
range problems in ionic systems, but they do not have parameterizations
for Ni—O or Fe—O interactions yet.

In the case of magnetite FO, we assess INN-MEAM and Buckingham
potentials. We have also found a Fe—O Tersoff potential [24], however
it does not properly describe magnetite, but it works well for other al-
lotropes. There is also found an embedded atom method (EAM) potential
combined with the charge equilibration method [72]], which allows
more realistic simulations as charges are not fixed, although this model
is not used here.The mechanical properties of FO and other Fe-oxides
can been also studied using the GULP package [25] with a shell model
potential [26]. However, if only core-core interactions are considered, it
resumes to Buckingham types used here.

The main goal of this work is to compare these different empirical
potentials as they are applied to trevorite NFO spinel and magnetite FO
spinel systems. More specifically, we assess whether these short-range
and long-range potentials are able to describe the main structural
properties of the spinel systems NFO and FO. To do so, we compare the
various potentials to density functional theory (DFT), experimental re-
sults reported in the literature and between themselves.

Our simulations are performed using the Large-scale Atomic/Mo-
lecular Massively Parallel Simulator (LAMMPS) [27]. In this paper, we
focus on the lattice constant a, the anion parameter u, the elastic con-
stants and their derived quantities: bulk modulus B, Poisson ratio v, ri-
gidity modulus (or shear modulus) G, Young modulus E and the Zener
anisotropic factor A; all at zero temperature. We also evaluate the va-
cancy formation energy as vacancies are one of the most important type
of defects in solid materials [28]. Finally, we check spinel stability for
temperature ranging from 100 K to 2000 K. Comparing results for these
various properties allows us to make recommendations as to which
potential, if any, is most appropriate for specific research questions.

2. The implemented empirical potentials

A list of the potentials found for Ni—Fe—O systems is summarized in
Table 1. Below, the description of the potentials implemented here with
spinel ferrites NFO and FO.

2.1. Buckingham types

The simplest way to describe a spinel is by using a combination of a
Coulomb pair potential and Buckingham empirical potentials. The
anion-anion and anion-cation interactions can be handled by

Buckingham spinel parameters for NiFe,O4 (Buck-1, Buck-2) and FezO4 (Buck-2) systems.

NFO, Buck-1 [14]. Ions adopt partial charges.

Pair % 2 Ay(eV) &) Cjj(eVA%) Bj(eVA™ D;j(eV/A?) n ro(A)
0—0 -1.2 -1.2 2029.2204 0.343645 192.58 46.462 —0.32605 3.430 1.9376
NiO +1.2 -1.2 12987.7832 0.203164 35.994 73.158 —14.550 3.024 1.0274
FeO +1.8 -1.2 11777.0703 0.207132 21.642 104.203 —32.110 2.670 0.9302
FeFe, NiNi, NiFe (only Coulomb term used)
NFO, Buck-2 ([15,16]). Ions adopt nominal charges.
O0—O0 [16] -2 -2 9547.96 0.2192 32
NiO [15] +2 -2 775.0 0.3250 0
FeO [16] +3 -2 1414.6 0.3128 0
FeFe, NiNi, NiFe (only Coulomb term used)
FO, Buck-3 [16]. Ions adopt nominal charges.

Fe*t0* +3 -2 1414.6 0.3128 0
Fe?'0* +2 -2 649.1 0.3399 0
0*0* -2 —2 9547.96 0.2192 32

FeFe, NiNi, NiFe (only Coulomb term used)
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Table 3
Buck-Morse parameters for NFO [17], the charges are +1.2 for Ni, +1.8 for Fe,
and —1.2 for O.

A (eV) p(A) c D (eV) i r
(eVA®) a@h @
0—0 560.93434  0.360000  4.20 - - -
O—Ni 284.09782  0.362661 - 24196868  2.00 1.80
0—Fe 118.05851  0.416163 - 1.3120262  2.00 1.80
(Ni, Fe)- 113.63134  0.482105 - - - -
(Ni, Fe)
ziz;e’ -r;\ Gy
T ) M
Aneor; Py Tij

where 1/4r€g = 9 x 10°N-m2-C~2 = 14.399645¢cV-A-e~2 with e, being
the electron charge, A; and C; are parameters set according to each
atom, ry is the distance between two pair of ions. For cation-cation pairs,
only Coulombs interactions are sufficient so A; and Cj are set to zero.
For the NiFe;04 spinel two different parameterizations (Buck-1, Buck-2)
are found in literature [14,15,16] and presented in Table 2. The first
one, Buck-1, uses partial charges 1.2 e, 1.8 e and —1.2 e for Ni, Fe and O
respectively [14]. This pair potential form is proposed in Ref. [14],
where it is used to investigate the structural properties of glasses and
interfaces between glasses and spinel (MgAl>04 and NiFey04) crystals
through MD simulations. In that work, the authors add a correction
short-range term at small distances to avoid unreasonable results caused
by the Buckingham term, so this potential reads as

2
zz:€ -\ Ci
L+A[jexp( ”) —=  if ry>n,

4m€ory i T
Uy(r) = ) . @
Zizje 2 ij .
+ Dyri; +—- if r;<n
4neyr;; v ’J,; Y ’

where By, D and n are parameters fitted for each ion. A better choice
could be the universal ZBL potential [29], which offers a more accurate
description of short distance interactions (although it requires an in-
termediate spline interpolation between the two functions). This
correction can be important in collisions where interactions at short
distances are relevant, or in KMC simulations of diffusion of interstitial
atoms where the closest distance between two pairs of atoms should be
observed at saddle points, but for problems treated here like vacancy
diffusion or computing of the elastic constants it can be safely ignored.
The ry term is not given by the authors, but it can be easily computed
using the Newton-Rapson method; this term is also given in Table 2.

The second parameterization, Buck-2, adopts formal charges of 2 ¢, 3
e and —2 e for Ni, Fe and O respectively and is taken from Ref. [15]
(Ni>"—0?% interactions) and Ref. [16] (Fe3+—02', 0%—0? interactions).
The parameters are also given in Table 2.

In the case of magnetite Fe3O4, the Buckingham parameters Buck-3
are given in Table 2 where parameters for Fe>*0%" and 0%0% in-
teractions are the same as Buck-2. This parameterization has already
been tested for vacancy diffusion in spinel systems in the temperature
range from 1300 K to 2000 K and diffusion coefficients have been
calculated from mean square displacements [16]. As before, Fe-Fe, Ni-Ni
and Fe-Ni cation interactions are handled by a Coulomb term only.

2.2. Buckingham-Morse
Another potential proposed for the NFO spinel was conceived by

adding a Morse term to the Buckingham potential [17]. This potential
takes the form

Computational Materials Science 213 (2022) 111653

2
zze .
U; = Ajex v
! 4”EOrij+ ! p< Pij )

0(-))]
3)

Parameters (Buck-Morse) are shown in Table 3. This potential was
originally used to simulate NiCry04 and FeCr204 spinels, however as it is
fitted from the respective binary systems, here we test it for a NiFepO4
spinel. To ensure neutrality for Fe we use a charge of +1.8 instead of the
+1.2 reported in Ref [17]. We assume that this is correct because
Buckingham plus Morse terms give the short-range cohesion energy of
non-ionized atoms whereas the Coulomb term corresponds to the ioni-
zation (how much charge is removed from a neutral atom). The same
approximation is applied by Oliver et al. Ref [15] for interactions of
Ni2*/3*_02", in nickel oxides. This potential fails at short distances < 1
A, but is suitable for problems involving stable structures and energy
minimizations.

,%JrD,_v,- [exp( —2p; (r[j — r?]) ) — Zexp<

ij

2.3. Modified embedded atom method (MEAM)

The MEAM potential [30,31] is a variation of the embedded atom
method (EAM) [32], which includes angular dependent interactions
implemented via the electron density term. There are several formal-
isms. The original version of MEAM was proposed by Baskes [33] and is
now known as 1INN-MEAM. There is a second one called second-nearest
neighbor modified embedded-atom method (2NN-MEAM) developed by
Lee and collaborators [34,35]. Although the functional form of the
MEAM potential remains the same, through the years several specific
functions have been proposed. For example, some have introduced
additional terms to describe the electronic density [36] and reproduce
the universal equation of state —the Rose form [37]— which is used in
the reference structure construction [33,34,35]. The Rose form is

E'(R) = —E.(1+d +da)e ™, 4

a*:a(£—1>, (5)
re

where R is the distance between the interacting atoms in the reference
structure. The parameters E.,r., B, and Q are the cohesive energy (or
sublimation energy), the equilibrium distance used to fit the properties
of each atom, the bulk modulus and the atomic volume, at the reference
structure, respectively; d is a variable parameter, which for older
bibliography is set to zero (for example the first papers of Baskes [33,34]
or even some recent papers[38]). The parameter « is known as the
exponential decay factor for the universal energy function. Some reports
do not give a but rather provide the bulk modulus B, as they are related
by

a= ,/9294 ©)

Generally, all these parameters can be obtained from experiments or
DFT. In the case of spinel systems, only few papers have been found with
this potential. Specifically, we consider the 1INN-MEAM versions of
Ohira et al. [2,18] for NFO and FO spinel systems. The background
electron density implemented in Ohira’s parameterization, labelled as
MEAM-1 is

2
P =P o @

where pg is a scaling factor and the ratios between atomic electron
densities of the constituent elements are required (for pure systems they
can be set to one) [33,34], T, is the effect of the angular terms given by
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Table 4
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MEAM parameters for Ni, Fe, O: The cohesive energy E. (eV), the equilibrium nearest neighbor distance r. (A), the exponential decay factor for the universal energy

function a, the scaling factor for the embedding energy A, the exponential decay factors for the atomic densities 5, the weighting factors for the atomic densities t®

and the atomic density scaling p,.

E. re a A 5O B 42 53 £0) () e 3 o
Ni 4.45 2.49 4.99 1.10 2.45 2.20 6.00 2.20 1.00 3.57 1.60 3.70 0.46
Fe 4.29 2.87 5.07 0.89 2.94 1.00 1.00 1.00 1.00 3.94 4.12 -1.50 0.90
o} 4.59 1.21 4.59 0.80 2.31 2.26 2.07 1.52 1.00 11.80 8.40 -6.20 2.60

Table 5
MEAM potential parameters for mixed elements [2,18,31,33], reference struc-
tures are L, (Ni3Si type) and B; (NaCl type).

Fe-Ni Fe-O Ni-O
Ref struct Lia B: B:
Ay —0.0110 —1.3650 —1.2465
Te 2.5031 2.1475 2.0842
a 5.2000 4.0000 4.1000
d 0.0 0.0 0.0

3 o (P 2
- DN
: Zt </’0 > ’ ®)

i=1

where t® are adjustable parameters and p® is the partial electron den-
sity as defined in Baskes [31,39]. Another possibility is

p=pV1I+T, )

however, according to Baskes, this form has the inconvenient that it
yields imaginary electron densities for I' < 1 which is possible if any of
the t® are less than zero. We tested this form with Ni (labelled as MEAM-
2) and with Ni and Fe (labelled as MEAM-3); O density is not changed.
The results are almost identical for the stiffness constants but these
representations have a significant impact on vacancy formation energies
as will be shown in Section 4.5.

Two sets of parameters are required in the MEAM formalism. The
first one has thirteen potential parameters for every unitary element (Ni,
Fe, O) and they are listed in Table 4. The parameters r, E;,a, are
already explained above, A is the scaling factor for the embedding en-
ergy, p® are the exponential decay factors for the atomic densities and
t®) are the weighting factors for the atomic densities. In our LAMMPS
implementation, we have used the default averaging rule for t(?
parameters.

The second set of parameters contains the information for the bonds
Fe-Ni, Fe-O and Ni-O, as explained above, and are given in Table 5. In
general, each bond requires approximately thirty independent parame-
ters to describe the MEAM potential formalism. Most of them are the
Chmin(i,], k) and Cpax(i,j, k) many-body screening terms which are set to
their default values of 2.0 and 2.8, because Ohira’s parameterization is
done for the 1INN-MEAM proposed by Baskes [31]. This approach
reduced the number of parameters to three for each binary reference
structure, Ef, 7., a or B (they can also be obtained from experiments or
DFT works). We also fit the additional MEAM-LAMMPS-parameters to
match the old version of DYNAMO code as described in the LAMMPS
manual. The sublimation energy for a reference structure of a mixed
type is defined by

o _EtE )

i ) i, 10)
where E! is the sublimation energy of atom type i and A; (eV/atom) is
the heat of formation of the reference structure, E. or A;.

We test these parameterizations of Fe and O for the simulations of
magnetite FO; in contrast to the Buckingham FO potential, the MEAM is
not able to distinguish between Fe?" or Fe>' ion types; their distinction

is then only given by their occupation crystallographic site: tetrahedral
(A) or octahedral (B).

3. Procedure
3.1. Sample construction

As stated in the introduction, ferrites are described by the general
formula AB,O4 (see Appendix A for more details). For nickel-ferrite
NFO, in the normal spinel case, Ni and Fe fill A and B sites respec-
tively, in the inverse spinel the Fe atoms fill 8 A-sites and Ni and Fe fill
randomly the 16B-sites. The case of the magnetite FO is similar. In a FO
inverse spinel half of the Fe>" ions occupy the cation tetrahedral A-sites
and the rest (Fe*" and Fe®™) occupy randomly the octahedral B-sites (the
superscript is the charge used for Coulomb interactions. From the
experimental viewpoint, the most chemically stable structure of NFO
and FO is the inverse spinel structure. However, in this study, it has been
considered important to analyze the behavior of the simulations of these
compounds when their structures have a normal and inverse
configuration.

Properties of a perfect crystal such as elastic constants, bulk
modulus, shear modulus and cohesive energy are computed for each
potential by using a 1 x 1 x 1l-unit cell. This size is enough because
periodic conditions produce images which substitute the need of a larger
supercell. However, for vacancy formation energies a larger supercell of
10 x 10 x 10 unitary cell is required to account for the effects produced
by the stress associated with vacancy defects.

3.2. Minimization procedure

Minimizations can be done with the conjugate gradient (CG) algo-
rithm or the Fast Inertial Relaxation Engine (FIRE) algorithm [40]. Both
algorithms should properly stop a minimization when either energy or
force tolerance is lower than a predefined value. The procedure to test
our potentials is the following: first, for a given ideal spinel sample, the
system is relaxed at a fixed lattice constant (chosen as the experimental
one of 3.34 A) to determine whether the system keeps the spinel struc-
ture. Second, we relax the system at constant zero pressure to obtain the
relaxed lattice parameter. Third, elastic constants, bulk and shear
modulus, cohesive energy and vacancy formation energies are computed
for each potential with the lattice parameter obtained previously.

Long-range interactions can be handled via particle-particle particle-
mesh (PPPM) or the Ewald methods [41] (the Wolf algorithm can be
used [42,43], but the method exhibits poor performance). Computations
of the elastic constants —in contrast to computation of the vacancy
formation energy— are problematic because the algorithm depends on
minimizations where not only the energy, but the force must be lower
than predetermined tolerances. Relaxations that include this Coulombic
part are problematic because simulations may stop before reaching the
predefined force tolerance, i.e., the minimization procedure may stop
because the algorithm is unable reduce the energy (from one step to the
next one, the code stops if the change in energy is lower than the ma-
chine precision although the force is not yet lower than the tolerance).
To avoid this problem, in the Ewald (or PPPM) sums, three parameters
must be carefully chosen: the damping parameter o, the accuracy €gq4q
(the desired relative error in forces) and the cut of a distance r.. For
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Buck-1 (NFO)
°

Buck-2 (NFO)

Buck-Morse (NFO)
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Fig. 1. Top view along the [100] direction of the inverse (top) and normal NFO-spinel (bottom) structures after relaxation at zero pressure using Buckingham,
Buckingham-Morse, and MEAM potentials. Ni in blue, Fe in red, O in yellow. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

MEAM-1 normal or inverse

Buck-3 inverse
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Fig. 2. Top view along the [100] direction of the inverse FO-spinel structure
after relaxation at zero temperature and zero pressure using Buck-3 and MEAM-
1 parameterizations. Fe>" in blue, Fe>" in red, O in yellow. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 6
Predicted anion parameters for normal NFO and FO
spinels (Ideal is u,5,, = 0.375).

Buck-1 (NFO) 0.385
Buck-2 (NFO) 0.388
Buck-Morse (NFO) 0.388
MEAM-1 (NFO) 0.390
MEAM-1 (FO) 0.389
Buck-3 (FO) 0.388

Buckingham and Buckingham-Morse potentials, a cut-off distance for
computing long-range interactions into the k-space is set to r, = 16 A.
Lower values show problems of convergence or do not recover the spinel
structure. The precision for Buckingham is set to €g,qq = 10710 with
Ewald method, this value is too small compared to usual values reported
to be around ~ 104 for MD simulations at other temperatures and
larger box-sizes, however, minimizations here require more precision. In
the case of the Buckingham-Morse, it performs better with PPPM and
€ppm = 1078, The damping parameter « is the predefined value
computed by LAMMPS at the defined precision guarantying a full

relaxation for the unitary cell, then we keep this value for the larger
systems. Adding the long-range term r~®(via Ewald or PPPM) does not
modify the results, so only r~! is computed in the k-space. A force
tolerance of 101° eV/A and energy tolerance of 0.0 eV is used in all
minimizations, except in computations of vacancies formation energies

where the energy tolerance is set to 10 eV.

4. Results and discussion
4.1. Geometries after minimizations

Fig. 1 and Fig. 2 show comparisons of the final structures obtained
with different force fields after relaxation at zero pressure for the NFO
and FO spinel systems; inverse (top) and normal (bottom). The geometry
of the NFO normal spinel is maintained in all the simulations (Fig. 1).
The MEAM-1 performs well for normal spinel and produces an accept-
able distortion when tested with an inverse spinel (MEAM-2 and MEAM-
3, which use the alternative density —see Section 2.3—, have similar
results). Buckingham and MEAM predict similar geometries for FO
normal spinels (Fig. 2). Fig. 2 presents Buck-3 and MEAM-1 structures
for FO inverse a spinel; since MEAM does not handle charged ions, both
normal and inverse spinels are represented with the same structure.

The anion parameters u associated with the potentials studied here
—for both NFO and FO normal spinels— are systematically larger than
the ideal value of u,z,, = 3/8 [12]. However, as summarized in Table 6,
all potentials generate anion parameters in good agreement with ex-
periments. The increase in the value of u with respect to the ideal value
u,3,, is expected and associated with the movement of anions along the
[111] direction outward from the nearest A-site, while the B-site vol-
ume is compressed and consequently its symmetry [44]. For NFO,
Rietveld structure refinement gives values of 0.388 [11] and 0.380 [45],
in agreement with our results. Similarly, in FO, a value of approximately
0.380(1) [46] is reported (here computed for normal spinel for
simplicity), where the error depends on the size of the nanoparticles.

4.2. Bulk properties at zero pressure

Lattice parameter, energy and elastic constants for the normal and
inverse spinels are summarized in Table 7 for NFO and Table 8 for FO
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Spinel NFO predicted data: lattice a(/f\), energy/atom Ef (eV), bulk modulus B (GPa), rigidity (shear) modulus G(GPa), Young modulus E(GPa), Poisson ratio v, elastic
constants, Ci1, C12, C44 (GPa), anisotropic factor A and Debye temperature 6p(K). Underlined are data computed from their elastic constants. Values in () mean that in
one of directions lattice changes the last digit by that value. See Table 1 for a description of the potentials.

NFO-Normal a Ey B G E v Cn1 Cia Caa A Op
Buck-1 8.606 —10.843 164.57 78.28 195.97 0.30 235.69 129.00 94.83 1.78 580.5
Buck-2 8.415 —27.639 223.25 125.06 316.14 0.26 354.27 157.74 146.94 1.50 736.4
Buck-Morse 8.206 —12.156 206.39 69.48 187.41 0.35 254.09 182.54 108.13 3.02 547.9
MEAM-1 8.514 —7.041 142.82 78.84 199.77 0.27 244.94 91.76 80.38 0.38 588.3
MEAM-2 8.534 —7.032 144.35 81.97 206.77 0.26 252.82 90.11 82.38 1.01 600.2
MEAM-3 8.533 —7.040 143.93 80.34 203.21 0.26 251.73 90.03 80.00 0.99 594.4
NFO-Inverse a Ef B G E v Cin1 Cia Cyq A Op
Buck-1 (Inv1) 8.58(7) —10.862 174.56 72.15 190.23 0.32 233.81 144.78 99.73 2.24 568.5
Buck-1 (Inv2) 8.58(9) —10.856 173.54 70.73 186.62 0.32 228.44 143.85 99.82 2.36 563.2
Buck-2 (Inv1) 8.31(2) —27.609 247.22 121.58 313.54 0.29 354.33 195.15 161.52 2.03 723.9
Buck-2 (Inv2) 8.31(2) —27.601 246.71 121.57 312.94 0.29 350.76 192.04 161.82 2.04 723.7
Buck-Morse (Inv1) 8.14 —12.306 216.29 96.21 251.27 0.31 311.34 167.83 117.09 1.63 638.6
Buck-Morse (Inv2) 8.13(4) -12.298 215.55 95.35 249.13 0.31 308.59 167.45 116.64 1.65 635.5
MEAM-1 (Inv1) 8.2(3) —7.040 120.43 79.66 195.56 0.23 217.81 70.5 83.93 1.14 578.9
MEAM-1 (Inv2) 8.2(3) —7.044 135.27 79.18 196.14 0.24 219.83 77.64 85.08 1.20 577.9
Expt [14,49] 8.339 - 198.2 70.6 189.4 0.34 273.1 160.7 82.3/81[2] 1.46 556.3
DFT [50] 8.43/8.36(51] —6.636(51] 177.1 76.17 199.85 0.31 252.2 139.5 93.2 1.65 578.6
MD-buck[14] 8.3 - 182.1 73.5 138.2 0.31 249.2 148.5 106.0 2.10 583.3
MD-MEAM|2,18] 8.342 —4.38 120 - - - - - 82 - -
Table 8

Magnetite FO predicted data: lattice a(;\), energy/atom E¢ (eV), bulk modulus B (GPa), rigidity (shear) modulus G(GPa), Young modulus E(GPa), Poisson ratio v, elastic
constants, Ci1, C12, C44 (GPa), anisotropic factor A and Debye temperature 6 (K). The underline is data computed here from their elastic constants. Values in () means
that in one of directions lattice changes the last digit by that value. MEAM-1 and MEAM-2 with Inv1 give the same data as Inv2.

FO-Inverse a Ef B G v Cn1 Ci2 Cys4 A Op
MEAM-1 (Inv1) 8.570 ~7.505 103.43 82.8mo0 196.07 0.18 233.04 38.62 74.37 0.77 603.0
MEAM-2 (Inv1) 8.600 ~7.502 106.02 85.36 201.89 0.18 238.39 39.84 77.16 0.78 613.2
Buck-3 (Inv1) 8.34(5) —27.486 240.71 119.88 308.62 0.29 347.17 189.05 158.47 2.00 724.4
Buck-3 (Inv2) 8.350(4) —27.480 240.4 120.39 309.27 0.28 345.51 185.87 158.59 1.99 726.0
Expt [49] 8.396 —4.96[24] 159.6 89.3 225.8 0.26 267.6 105.6 95.3/97(2] 1.18 625.4
Expt [53,3] 8.396 - 185.7 £ 3.0 60.3 + 3.0 163.3 0.35 260.5 + 1.0 1483+ 3.0 63.3+15 1.13 519.9
MD-MEAM)|2] 8.399 —4.91 156 - - - - 133 - -
DFT [53] - - 187.4 48.99 135.19 0.38 242.3 159.9 55.0 1.33 470.3
DFT [54] 8.396 - 187.4 80.00 211.14 0.32 275 + 40 155 £ 60 97 £13 1.62 596.1

and for each potential. Due to the random nature of the inverse spinel, Debye temperature ), can be approximated by

two samples are used: Invl and Inv2. They are also compared to 3

experimental and DFT results. The polycrystalline, bulk modulus B, b = L] F”’N b } . (18)

Poisson ratio v, rigidity modulus (or shear modulus) G, Young modulus E kg | 4nM

and the Zener anisotropy factor A, are calculated following the Voigt-
Reuss-Hill scheme [47,48],

2
B:C11+ CIZ. an
3
G:GR+GV' 12)
2
Gy = (Ciy — Cpp) + 3C44_ 13)
5
5(Ciy — Ci2)Cu4
Gr=—n——2772 (14
K 3(Cii — Cpp) +4Cy
9GB
E=—"—"""_. 15
G+ 3B as
3B/2—-G 1 3G E 3B—-E 1 E
= ——(1- - == 1
G+3B 2( 3B+G> 6" 68 2 o5 U9
2Cy
A=—""— a7)
C —Cn

According to Anderson [52], in an isotropic polycrystalline, the

where h/kg = 4.7992431 x 10~!! K:s, is the ratio of the Planck and
Boltzmann constants, n = 56 is the number of atoms in the spinel, N, is
Avogadro’s number, p is the density and M is the molecular weight. vy, is
the average sound velocity given by

{2 1]\°
w=Glal) 4
V\F y [BEAEG (20)
p P

where v; and v, are the longitudinal and shear (transverse) elastic sound
velocities. Results for the Debye temperature predicted by each potential
are also reported in Table 7 and Table 8.

For the NFO with Buck-1, we predict a lattice constant of ~8.6 A
(both normal and inverse spinels) and elastic constants of Cy; = 235
GPa, C12 = 129 GPa, C44 = 95 GPa (see Appendix B for details of the
computing). These results are slightly different from to those reported in
Ref. [14], where authors predict a lattice constant of 8.3 A and elastic
constants of C;1 = 249 GPa, C1, = 148 GPa, C44 = 106 GPa. These dif-
ferences may be due to a procedure not reported (DL_POLY and GULP
codes are used in Ref. [14]), as we have repeated the computations with
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Fig. 3. Pressure as a function of the strain for a normal spinel NFO (top-left) and an inverse spinel (top-right). At the bottom magnetite FO spinel at zero temperature.
Dotted lines are plots of the Birch-Murnaghan equation using experimental data of Table 7 and Table 8 with B = 4.0.

GULP in the core-core approximation and have recovered the same
LAMMPS results in contrasts to Ref. [14]. Our elastic constants differ
somewhat, however, from experiment of Li [49]: the best agreement is
found for Cy4 (relative error of ~15%) and the bulk modulus (relative
errors of ~12% in normal spinel and ~17% inverse).

The Buck-2 parameterization presents the largest difference when
compared to experimental data. Its bulk modulus is ~25% above
experiment for the inverse and ~13% above for the normal spinels
(shear and young moduli are also larger).

For the NFO with Buck-Morse, the bulk modulus is ~10% higher
than the experimental value for inverse spinel but ~4% higher for
normal spinels. The shear and young moduli show larger discrepancies
with the experiment and DFT, especially for inverse spinels (up to ~27%
and ~33% larger than experiment). This is associated with the signifi-
cant overestimation of C;; and Cy44 as compared to experimental results.

In general, both Buckingham and Buckingham-Morse potentials
predict symmetrical normal-spinel structures where the components
C11, C12, Cs4 are the only elastic constants different from zero. However,
this is not the case for inverse spinel systems where the other elastic
constants are not zero (although they are small, around + 0.2 to + 4
GPa). Also, the lattice parameter displays small differences (of up to
0.02 A) depending on the direction (x,y,). This is reported in Table 7,
where for one of the directions the last digit changes; e.g. in Buck-1,
notation a = 8.58(7) A means that one of the lattice sizes the last digit
changes from 8 to 7, i.e. after relaxation the unitary cell has a size of
8.58 x 8.58 x 8.57 A. This statistical “breaking of symmetry” is expected
in “small” inverse systems and it is due to the random cation arrange-
ment where two type of cations are randomly distributed in the octa-
hedral sites and in contrast to a normal spinel where there is only one
atom type in the octahedral sites; it vanishes for sufficiently large
systems.

While magnetite FO is only observed as an inverse spinel in nature,

NFO crystallizes more commonly as an inverse spinel but can also form
normal spinel. This is already predicted by Buck-1 and Buck-Morse pa-
rameterizations but Buck-2 fails as it predicts the opposite. Analogously,
for the FO Buck-3, which shares the same parameters for Fe-O and O-O
interactions, results are very similar to those of NFO with Buck-2 (see
Table 7). In FO, depending on the experiment, C44 is found to be in the
range from ~53 GPa to ~99 GPa [ 3], whereas the Buck-3 predicts ~158
GPa and the MEAM potentials predict on average ~75 GPa, which is
more in agreement with the experiments or DFT.

Although we are unable to recover Ohira’s MEAM-1 results exactly
with our implementation in LAMMPS (see MEAM in Table 7), our
implementation gives the best overall results in NFO when compared
with experimental and DFT data. However, the energy per atom, Ef, we
find is around 60 % larger than Ohira’s. Nevertheless, it matches better
with DFT prediction as it differs only by 6%. Furthermore, it is known
that DFT tends to overestimate cohesive energies. The predicted elastic
constants of the normal spinel fit better with the experimental results
than those of the two inverse spinel samples. It seems that in Ohira’s
work, the potential was fitted to a normal rather than an inverse spinel.
Nevertheless, our results of inverse spinels are acceptable. The MEAM
with inverse spinel is also affected by a random arrangement of Fe and
Ni atoms in octahedral sites (elastic constants and bulk modulus etc), but
the results are still in agreement with experimental data. Samples Inv1
and Inv2 give similar results. Thus, the shuffling of Fe and Ni atoms at
octahedral sides gives randomness and we should expect an interval of
error in all the stiffness quantities (although not computed here).
However, the statistical error should disappear for systems large
enough.

The Poisson ratio v is proportional to the plasticity of materials and is
therefore an indication of their stability. In the case of central forces, it is
theoretically predicted that at zero pressure a material is stable if
0.25 < v < 0.50, based on the requirement that the strain energy must
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Fig. 4. Computation of the elastic constants at zero temperature for a normal NFO spinel as a function of the strain (bottom axis) and pressure P (top axis).

be positive [55,56]. This is indeed the case for the Buckingham poten-
tials but not the case for the MEAM with inverse samples. Indeed, for
NFO, the prediction is v ~ 0.24 which indicates that it is unstable; be-
sides, the MEAM is not a central force due to the density term. In FO, the
MEAM potentials predict too small Ci3~39 GPa and v~0.18
compared to experiments, but the spinel is stable.

4.3. Pressure and elastic constants versus strain

It is important to know how a lattice change affects pressure and
elastic constants. In the following simulations, pressure —computed as
the average of the diagonal stress tensor, P = (P17 + P22 + P33)/3, see
equation (26) in Appendix B— is plotted as a function of the strain by
changing the lattice by a maximum of + 4% (or ~12.5% of volume) with
respect to the zero pressure point, and relaxing the structure. We also
compare to the Birch-Murnaghan equation of state written as function of
lattice parameter [57,58],
TN 1]}

2 [\a a a ’

Pla) 1+§w¥—® 21

where B’ is the derivative of the bulk modulus with respect to pressure,
experimentally found to be 4 + 0.4 for NFO and FO [57,58]. Experi-
mentally, the bulk modulus, B, can be computed by least-squares fit of
pressure-volume to the Birch-Murnaghan equation of state, here we
rather use the experimental data of B, B’ to plot P(a) and compare (dots
in Fig. 3). As before, the inverse spinel is tested with the two samples
Invl and Inv2 and their plots are almost identical. Comparing the po-
tentials, it is clear that while the Buckingham types have similar
behavior (both normal and inverse spinels), with the MEAM types the
lattice change produces a lower pressure (for instance, in the inverse
spinel it is more than half compared to Buck-1 or Buck-Morse). There is
no symmetry as pressure is higher for negative deformations
(compression) than for positive deformations. All the Buckingham types
predict a higher resistance to deformation of the lattice when tested with
inverse spinel, in contrast to MEAM types that predict almost the half.
For FO we observe similar results, the higher resistance to deformation is
given by the Buckingham type in better agreement with the Birch-
Murnaghan equation.

Elastic constants are computed as a function of the strain with results
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Fig. 5. Computation of the elastic constants at zero temperature for inverse NFO spinel and inverse FO (bottom) as a function of the strain (bottom axis) and pressure
P (top axis).

shown in Fig. 4 and Fig. 5, for normal and inverse spinel structures

respectively. The change in pressure is also shown on the top axis (for Cii>0, Cu>0, Cu>|Col, (Cu+2C0))0. 22
the inverse spinel, pressure is computed as the average of samples Inv1l Our calculations indicate thus that these criteria are indeed satisfied
and Inv2). In general spinel structures are mechanically stable if their for all the potentials investigated here. Besides, we observe that the
elastic constants satisfy the following stability criteria [48]: spinels are anisotropic with violation of Cauchy relation satisfied,
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Fig. 6. Energy minimization as a function of the lattice a for NFO (top-center) and FO (bottom). Unitary cell sample with an energy tolerance of 0.0 eV and force
tolerance of 1071° eV. See Table 1 for a description of the potentials.

linear and all have approximately the same slope, in contrast to Cy3, that
is not linear and tends to grow faster with compression. C44 is approx-
imately constant in all plots (although with Buck-2 or MEAM-1, it tends
to decrease as box increases). For the inverse spinel, we observe similar
results with Buckingham types, however, this is not the case for the
Buck-1 5.03 6.52 2.25 MEAM types. For instance, under box compression the curves change

Table 9
Vacancy formation energies (eV) in normal-spinel structures NFO and FO, cubic
box system of 10 x 10 x 10 unitary cells.

Vacancy (NFO) A-site B-site (0]

Buck-2 6.81 5.70 L8l their slope abruptly, indicating structural changes in the inverse spinel
Buck-Morse 6.48 8.13 3.38 structure. Besides, depending on the sampled used (Invl or Inv2) C
MEAM-1 1.57 ~25.40 9.13 . 'es, dep §0 P Vv 11
MEAM.-2 1.60 _9.84 8.67 and C;, have different shapes, in contrast to C44 which is not affected.
MEAM-3 1.58 -9.84 8.76 The Buck-1 is the only potential that predicts similar results for either
DFT-inverse [61] 0.52 1.56 - normal or inverse spinel.
For FO, the Buck-3 potential gives similar results than Buck-2 with
Vacancy (FO) Fe (A-site) Fe (B-site) o inverse spinels. In the case of MEAM-1 and MEAM-2 the results are
Buck-3 6.29 8.19 3.33 similar, although the change of the density function produces a small
MEAM-1 -2.27 -37.23 10.10 o o .
variation of Cy;. Under positive box expansion we see that these po-
tentials predict that replacing Ni by Fe does not represent a big change
C12 # Ca4. This is also manifested by the Zener anisotropic factor. It is for the mechanical properties. Experimental results in Ref. [3], predicta
also observed that, C;; > Ci > Ca4, in all the cases except when MEAM- lineal behavior as a function of the pressure up to 8 GPa for the com-
1 or MEAM-2 are used with the inverse samples, in that case, and in ponents Cy1,Cr2, Cs, which are in agreement with our results.

contrast to experiment, C;; > Cs4 > C15. We see also that beyond the
limits of + 0.04 some potentials start to predict unstable structures, e.g.,
the Buck-Morse with a normal spinel start to predict that C;,ZC;; under
too much compression and in the case of Buck-2 we see that relaxations
start to fail although stability criteria are still satisfied.

For NFO, in a normal spinel we observe that, for all potentials, Cy; is

4.4. Comparison of the minimum energies
To see the effects that the volumetric change produces in energy we
performed a series of simulations as function of the lattice parameters a

in the interval 8.0 A to 9.0 A (or equivalently, vary the volume from 512

10
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Fig. 7. Average lattice parameter, a = /LI, l;, (left) and enthalpy (right) as a function of temperature for normal NFO (top), inverse NFO (center) and inverse FO
(bottom); data taken every 50 K. Averages taken every 2000 steps, first 50 000 steps are ignored. Dots are experimental data reported in Ref. [62,63].

A3 to 729 A%) with steps of 0.1 A; Fig. 6 shows the results. As before we
used a normal and two inverse spinel samples (Inv1 and Inv2, although
the results are similar, we see small variations of physical quantities).
Fig. 6 shows that for NFO the potentials Buck-1 and Buck-Morse
predict the inverse spinel as the most stable structure in agreement
with Ref. [59]. In contrast, Buck-2 and Buck-3 predict the normal NFO
and FO spinels as the most stable structures and they have similar results
as a consequence that both use the same parameters for Fe>* and 02",
At zero pressure, Buck-1 and Buck-Morse predict a high cohesive
energy of more than ~10 eV/atom (see Table 7), which is too large
compared to experimental or DFT results of ~5-7 eV/atom. It is worse
for Buck-2 and Buck-3 (see Table 7 and Table 8), the total energies are
more than twice than the energy predicted for Buck-1. This is a well-
known problem of these coulombic potentials where a significant part
of the interaction between the constituent ion arises from the Coulomb
force between cations and anions at fixed charge [60]. The energy
computed corresponds to the energy required to separate a crystal spinel
into its individual ions as they no longer interact and, such a charged
cloud has a significant Coulomb energy [60]. As a result, the lattice
energy predicted by a fixed charge model is significantly higher than the
experimentally measured cohesive energy, which is defined as the en-
ergy required to separate a crystal into individual neutral atoms [60].
Besides, these Buckingham models do not allow the simulations of
different oxidation states or ensure charge neutrality in the crystal if the
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cation and anion composition vary and it cannot be used to study the
structure of the interface between a metal and its oxide. The change of
nominal charges onto partial charges was also investigated for Buck-2
(and Buck-3) with similar results, but it predicts a larger lattice
parameter of 10.2 A, although this change reduces the energy of the unit
cell to —8.34 eV/atom. Distortions at the end of some plots indicate the
starting of loss of spinel structure due to the high pressure.

As can be observed in Fig. 6, for MEAM types, the energy only varies
by around ~0.2 eV over the full interval. For NFO this potential per-
forms better for normal than inverse structures. For instance, a small
discontinuity (of around ~0.05 eV) in the energy relaxation is evidenced
for the inverse spinel sample Inv2, due to small distortions in the lattice
positions, although the spinel structure is still preserved. This distortion
indicates that the topology of the MEAM potential surface has some
roughness, thus there exists at least two minima that are close and the
code (CG or FIRE) minimizes to one if the lattice is lower than 8.2 A and
to the other if it is higher. Results as the final energy, lattice or elastic
constants with MEAM (shown in Table 7), are not too much altered
when the density is changed to the alternative density form p =
poV1+T (compare dashed lines-MEAM-2 to full lines-MEAM-1 in Fig. 6,
MEAMS-3 is not shown).
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4.5. Ni, Fe and O vacancy formation energies

The vacancy formation energy Ey is the energy needed to create a
vacancy defect in a perfect crystal, i.e., how much cohesive energy is
needed to form a vacancy defect. For monoatomic systems it can be
defined as

. N-1
EV:E’_TE”

(23)
where E, and E, are the energies computed with and without a vacancy
as obtained after a relaxation of spinel crystals with (N —1) and N atoms.
However, in ternary systems there are three different atomic types that
contribute with different fractions to energy, thus this formula must be
corrected to consider the fraction of each type

Nl—l

1

Ey = E, - E  —Ep _El3) (24)
where E; are total energies by ion type i in the perfect crystal and N; is
the number of ions of type 1 where the vacancy is created, with E, =
En +Ep +E3 and N =N; + Ny + Ns. For simplicity Ey is only computed
for a normal spinel, the results are shown in Table 9. Buck-1 and Buck-2
predict similar results, but Buck-Morse predicts larger values. In
contrast, the MEAM potentials predict negative formation energies, an
unphysical result as it means that an imperfect structure with a vacancy
is more stable than a perfect crystal. Yet, while these MEAM types seem
to produce unphysical thermodynamic situation with respect to vacancy
concentration, they predict stable structures under minimizations,
which means that systems with defects can nevertheless be considered,
with care, using these MEAM types. Besides, this also holds for finite
temperature and especially for the MEAM-1 with FO system as corrob-
orated in the next section.

4.6. Thermal effects on the lattice parameter at zero pressure

Finally, NPT simulations are done for temperatures from 100 K to
2000 K, in steps of 50 K, each simulation of 1 ns (1 million steps, each of
1 fs) with a box of 4 x 4 x 4; the results are shown in Fig. 7. We also
compare lattice to experiments (see dots) [62,63] (in the case of NFO,
we use the reported fitting equation for the thermal expansion, «a, to get
a = ao(1 +aAT)). The target pressure is set to zero, but it is well known
that in NPT simulations pressure fluctuates. For instance, if Buck-1 is
used, fluctuations vary from ~0.1 GPa at 100 K up to ~0.3 GPa at 2000
K and similarly for the MEAM, so we report the enthalpy per atom rather
than the total energy. Buckingham type potentials predict stable struc-
tures as the temperature rises beyond 2000 K, however the experimental
melting point of NFO is 1860 K [64]. The Buck-Morse potential starts to
deform the normal spinel around that value, but it fails for the inverse
spinel. The MEAM predicts that the normal spinel becomes unstable
after 800 K (and 650 K for MEAM-2). The case of inverse spinel with
MEAM is more critical, the structure starts deforming after ~300 K,
meaning that this potential is unstable for NFO inverse spinel structures.
However, the MEAM potential performs better for FO systems and the
result is similar to the one found by the Buckingham potential. The
MEAM FO predicts structure changes after ~1600 K while Buckingham
does it after ~1800 K, close to the FO experimental melting point of
1856-1870 K [65,66]. Nevertheless, we emphasize that it is known that
in general MD tends to overestimate the melting point, typically by up to
20% [67,68].

5. Conclusions

A literature research among the existing potentials for ternary Ni-Fe-
O systems is done and a list of potentials useful for spinel ferrites NFO
and FO is presented. Then, a comparison of static and dynamic bulk
properties of these selected different empirical potentials, namely
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Buckingham, Buckingham-Morse and MEAM is presented. Special
attention is given to properties based on minimizations at zero tem-
perature. For the description of the geometrical properties all the po-
tentials behave acceptably well, e.g., the anion parameters predicted are
in good agreement with DFT and experimental observations. Under
induced pressure, Buckingham types offer more stability than the MEAM
types (in the interval studied —up to + 4 % lattice variation— all the
potentials predict stable spinel structures). For the elastic constants,
depending on the potential, acceptable differences can be observed
when comparing to DFT and experimental reports. It is found that in an
inverse spinel the occupancy order in octahedral sites affects the elastic
constants.

For NFO systems: the Buckingham potentials with Buck-1 and Buck-2
parameterizations reproduce the known problem of predicting very high
cohesive energies even though they reproduce the right geometry. Buck-
1, for its part, correctly predicts the inverse spinel as the most stable
structure, in contrast to Buck-2 which predicts the contrary. Further-
more, the Buck-2 cohesive energy is more than two times larger than the
Buck-1 (due to the use of full charges). Also, its Debye temperature
prediction is too large compared to experiment (in part because Cy4 is
too large). Buck-Morse correctly predicts that the inverse spinel is the
most stable structure and the cohesive energies are similar to those
predicted by Buck-1. In this case, the prediction of elastic constants and
derived bulk properties are better than Buck-2 but worse than Buck-1.
During energy minimizations, the MEAM variants are good for
normal-NFO spinels, as it has the best behavior of all at zero pressure
and the elastic constants have the best agreement with DFT and exper-
imental results. However, at higher temperatures the normal spinel
becomes unstable and the structure is lost if the temperature is superior
to 800 K for MEAM-1 or 650 K for MEAM-2. The MEAM potentials fail
with inverse spinel structures, as they are unstable if temperature is
different from zero. That instability could be a consequence of the lack of
a long range term. The MEAM variants fail to correctly predict the va-
cancy formation energies, nevertheless they produce stable structures
for NPT simulations of crystals without defects.

For FO systems: MEAM potentials perform well but their main failure
is the impossibility to distinguish charge allotropes of iron (Fe>" or
Fe31). Despite the fact that the MEAM potentials predict too small C;» of
~39 GPa and small Poisson’s ratio of 0.18 compared to experiments, the
potential seems to be stable at higher temperatures. This is a conse-
quence of the embedded energy, which makes the potential non-central.
It also fails to correctly predict vacancy formation energies. Despite this
issue, NPT simulations with crystals without defects up 1 ns and up to
2000 K, predict stable structures. Buck-3 for FO predicts that the normal
spinel is more stable than the inverse, although the FO normal spinel
does not exist in nature. For the elastic constants and derived bulk
properties, Buck-3 predicts too large values (e.g. it has the largest
Debye’s temperature prediction).

In general, for FO we recommend MEAM for general cases where
speed is required but no distinction between normal or inverse is
demanded. For NFO we only recommend MEAM for static or low-
temperature simulations with a perfect normal spinel. However if this
is not the case, the Buckingham types are the best option but they can be
up to ten times more computationally costly. In any case care should be
taken with defects.

Finally, more research to find new empirical potentials that better
describe the bulk properties of spinel systems of FO and NFO is still
needed because, as shown in this paper, each potential discussed here
give only a partial description of the structure.
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Appendix A. Spinel Geometry

In general, the detailed atomic arrangements in a spinel unitary cell is described by three structural parameters: first, the lattice parameter, a;
second, the anion parameter, u; and third, the cation inversion parameter, i. More exactly, for cations X and Y, the spinel chemical formula can be
written as follows [12],

(Y X)) [X?fz Yl(yzt,')/z}zoh (25)

where () and [] denote A and B sites respectively. The variable i is the inversion parameter and it specifies the fraction of A-sites occupied by majority
ions. For normal spinel, i = 0; for random cation arrangement, i = 2/3, and for inverse spinel, i = 1 (here we limit our study to normal and inverse
system only). The ideal unitary cell sample is shown in Fig. 8 for two different representations: on top, with origin at 43 m point symmetry and, on
bottom, at 3 m, where u,3, = 3/8 = 0.375 and uz,, = 1/4 = 0.250 respectively and they differs by a simple translation, u,z, = us, + 1/8. According
to the conclusions of Ref. [12], the lattice parameter a should depend on the average effective cation radius and without significant dependence on the
specific cation arrangement, but u should be highly dependent on the cation inversion parameter i. Thus, in order to predict anion parameters in
spinels, prior knowledge of the cation arrangement is required. Good empirical potentials for spinels should be able to describe also this fact.

For comparing the geometries found with the different potentials, we look at the radial distribution function (RDF), which is shown in Fig. 9. In the
interval [0, a] there are 22 different peaks; only the first five are described: The first peak are the four nearest AO neighbors distances (v/3a/3) forming
a tetrahedral site and the second peak, the six nearest BO neighbors distances (a/4), forming an octahedral site. The third peak are second nearest
neighbors distances BB (v/2a/4) (same distance than 00), The four peak are second nearest neighbors distances AB and AO (v/11a/8). The fifth peak
are AA and second neighbors BO distances (v/3a/4).

Fig. 8. Description of the ionic positions in
spinel depends on the choice of the origin in
the Fd3m space group. Two different equi-
points with point symmetries 43 m (on top)
and 3 m (on bottom) are possible choices for
the unit-cell origin [12]. AB,O4 has 8 tetra-
hedral cations A (red), 16 octahedral B cat-
ions (blue) and 32 anions (yellow). In left the
corresponding top view images on (100)
direction. (For interpretation of the refer-
ences to colour in this figure legend, the
reader is referred to the web version of this
article.)
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Fig. 9. RDF of an ideal A,BO, spinel. First two peaks (at distances v/3a/8 and a/4) are first nearest neighbors to A and B sites and the next three, have their second
nearest neighbors distances at: v/2a/4, v/11a/8, v/3a/4.

Table 10
Fractional coordinates of ideal lattice sites in the cubic unit cell of spinel in the Wycoff notation. A-cation sites (point symmetry 43 m), B-
cation sites (point symmetry 3 m) and X-anion sites (point symmetry 3 m).

Origin at 43 m A-site cation, u = 3/8. Origin on inversion center 3m, u = 1/4.
111 111 777 .
A =1[0,0,0], {Z,Z :1] two sites. A= [§§ §]’ {évg’ 5]’ two sites.
= 235 [577] [757] [775] ¢ sites. 111 111 L T O
" |8'8'8]” |8'8’8]" |8'8'8]" |8'8'8]’ 2230 |23 |23 |37 32| Hourstes
X= [ u,u, K% B u), (% B u), (% N u) ] cight sites. X = [u,u,ul,[ —u, —u, —ul, eight sites.

(o) 69 [+ (0]
(o) )] o) )
o) (o) 6 o))

The conventional choices for the unit-cell origin in spinel are either 43 m, on an A-site cation or 3 m on an octahedral vacancy (the latter is an
inversion center). Table 10 lists the fractional coordinates of the spinel cubic unit cell for two choices. The spinel has a fcc unitary cell with coordinates
(0,0,0) and a(0.5,0.5,0.5), the unitary cell is simply created by adding to these points the fractional coordinates.

{
{
|

Appendix B. Elastic constants

The computational procedure is implemented as a script in the LAMMPS examples. The six stress components are calculated from a summation
over all N particles in the system [69,70],

1Y 1
P; = v ;mkvkivkj +V ; Tiifijs (26)

withiandj = x,y,z. The ry;, vi; and f;; are the vector components in the direction i of the position, velocity and force for the atom k. N’ means that the
simulation includes periodic image atoms outside the central box because periodic boundary conditions are used. The first sum is zero because, vi; =
0, in minimizations. This gives a symmetric pressure tensor, stored as a 6- element vector, with the components ordered by xx,yy, 2z, xy,xz,yz.
Elastic constants are related to the stress tensor by the relation Cpy = oe , where ey is the strain tensor and a, § stands for 1-11 = xx, 2-22 =
yy, 3—-33 =23, 423 =yz, 513 =xz, 612 =xy values (in Voigt notation). At zero temperature, these derivatives can be estimated by
deforming the simulation box in one of the six directions and measuring the change in the stress tensor P,. The first step is to minimize the system to get
zero pressure and compute the stress tensor, PS. Then, the unitary cell is deformed by a small positive fraction A, and minimized again to get the stress

tensor after the deformation P, = P,(Ag). Then, the derivatives with respect to strain components e; can be computed using finite differences
Cip = —APy/Aey=—(P —P))/h, 27)

where Aeg ~ hl;/l; = h, as the box is a square. The [; are the box sizes, L, 1, I, , and h = 107 is the finite deformation size (we should try several values
of h to verify that results do not depends on it). This procedure is repeated for a small negative fraction deformation so

Cy= (P, = P))/h. (28)
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More exactly, C; , are computed after deforming the simulation box by, A,, in the six directions, (¢ = 1,-,6)

FIPu(Ac = £hl) — PY]/h
cj;2 ;[P (A, = +hly) — P]/h
= F[Pu(A, = £hl,) — P]/h

CE, = F[Po(A,, = £hl) — P°)/h 29
CE = FlPu(Ay = £hl) — PO /h
Cus = FlPa(Asy = £hly) — Pg]/h,

where ( £ ) are positive or negative deformations. Next, an average is taken for each of the six components, i.e., the elastic constants are computed as,
Cap= (Cpy + Cgp)/2. By symmetry it must be demanded that C;, = (Ci2 + C21)/2,Cj3 = (C13 + C31)/2 and Cy3 = (C32 + C23)/2, and finally the
average moduli for cubic crystals is computed

Ci+Cpn+Cs

Cll - f7

o= Gt Cat G o
Cyy = Mo T 60

3
Because the spinel system is a cubic crystal it must be satisfied that

Cy =Cyp =G,

Cp = Cp3 = Cy3, 81
C44 = C55 = C667

the rest of coefficients must be zero, that is, an ideal spinel is a cubic crystal system where the elastic modulus matrix can be written as follows

Cy Cp Can O 0 0

Cp, Ch Cp O 0 O

_|Cn Cp €y 0 0 O
c= 0 0 0 Cy O 0 (32)

0 0 0 0 Cy O

0 0 0 0 0 Cy

This method constitutes a generic manner to obtain the elastic constants for any potential.

Appendix C. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.commatsci.2022.111653.
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