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Abstract

Activated processes, i.e., rare events requiring thermal fluctuations many times larger than the average thermal
energy, play a central role in controlling the relaxation and diffusion mechanisms of disordered materials such as
amorphous and glassy solids, polymers and bio-molecules. As the time scales involved are much longer than those
associated with thermal vibrations, these processes cannot be studied efficiently with standard real-space methods such
as molecular dynamics (MD). They can be investigated much more efficiently by working in the potential energy space.
Instead of defining moves in terms of atomic displacements, the activation-relaxation technique (ART) follows paths
directly in the energy landscape, from local minima to adjacent saddle points, giving full freedom for the system to
create events of any complexity. In this paper, we review the technique in detail and present some recent applications to

amorphous semiconductors and glasses. © 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

At low enough temperatures, the dynamics of
most systems is controlled by activated processes.
These processes are described by the need of
crossing energy barriers much larger than the av-
erage thermal energy of the system. Because of
Arrhenius’ law, this means that the typical time
scale 75 associated with these processes grows ex-
ponentially as a function of activation energy Ea,
7a ~ eXp(Ea/kyT). Even at room temperature, this
time scale can often reach seconds and more, well
beyond the picoseconds regime associated with
atomic vibrations.
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The microscopic origin of these mechanisms is
difficult to study experimentally because of the
need for fairly precise local probes that are not
always available. Numerically, the time scale in-
volved is simply prohibitive for standard simula-
tion methods such as molecular dynamics (MD)
and real-space Monte Carlo (MC). In the former
case, solving the atomistic equations of motion
implies integration time steps of the order of a
fraction of a picosecond, which effectively limits
the total simulation time to at best a tenth of a
microsecond, much too short for many activated
processes of interest. MC algorithms, that do not
suffer inherently from the same restrictions, are
clearly advantaged here. Real-space MC algo-
rithms, which define atomic or specific localized
moves, are however unable to produce efficiently
the large collective motions associated with
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realistic activated processes in disordered materi-
als. The sequence of small moves required to bring
a configuration to a local saddle point is just too
unlikely, in terms of a sequence of independent
moves, to occur frequently. Real-space MC is
therefore unable to reconstruct the rare events
dominating long-time dynamics.

MC moves, however, are not restricted to real
space. Activated processes are much better de-
scribed on the configurational energy surface,
where they correspond to minimum-energy tra-
jectories connecting two adjacent minima. Using
this definition, the activation-relaxation tech-
nique (ART) produces events directly in the
configurational energy landscape, avoiding the
difficult description of complex real-space atomic
moves which occur in parallel. The ART [1,2] is
essentially a two-step process: a configuration is
first brought from a local minimum to an adja-
cent saddle point (activation); it is then relaxed
from this saddle point to a new minimum (re-
laxation). These moves occur on the 3/N-dimen-
sional energy surface, allowing events of any
complexity.

In this paper, we first present a general discus-
sion of moves in the energy landscapes. We then
detail the current implementation of the algorithm
and present applications of ART to amorphous
silicon, amorphous gallium arsenide and silica
glass.

2. Energy landscapes

The dynamics of most systems, below the
melting point, consists of long periods of oscil-
lation around a given minimum with rare jumps
from one basin of attraction to another. As
mentioned above, the rate at which these events
occur is to a first approximation controlled by
the height of the activation barrier, the highest
point of the trajectory followed by the configu-
ration. It is then possible to reduce this process
to a sequence of minimum-saddle point-mini-
mum trajectories, neglecting safely the vibra-
tional part of the dynamics. This -effectively
replaces the continuous energy landscape by a
discrete network of minima, connected via tra-

jectories going through adjacent saddle points,
and provides the minimal description required
for any realistic dynamics. The entropic part of
the potential, which determines the pre-factor in
the transition-state theory, is here completely
neglected. In principle, these contributions could
also be incorporated in the algorithm, although
the additional theoretical and numerical efforts
required are large and have not been considered
yet. Moreover, although possibly affecting the
sequence of events, the discrete approximation
discussed above should be sufficient to describe
the structure and the nature of activated relax-
ation and diffusion.

In crystalline materials, it is often possible to
construct the discrete network using symmetry
arguments. For example, the trajectory of point
defects in c-Si such as simple vacancies can easily
be reconstructed from the symmetries of the dia-
mond structure. For higher precision, one can
refine the path using, say, ab initio methods. This
approach breaks down rapidly with the increased
complexity of multicomponent alloys and aniso-
tropic crystals; even taking into account the sym-
metries of the problem, it becomes very difficult to
identify all the possible diffusion and relaxation
mechanisms. The task is completely hopeless in
the case of disordered materials, where each atom
sees a different environment; direct sampling us-
ing, for example, the ART, is the only realistic
approach.

Working directly on the potential energy sur-
face, ART represents a change of paradigm over
standard real-space algorithms. It is almost in-
sensitive to the complexity of the moves and the
height of the barriers, and can therefore provide an
almost exhaustive list of realistic mechanisms. In
ART, the atomistic details of the collective process
are not used in the input of events but appear
rather as the output of the simulation. As the
configuration, as a whole, is pushed towards a
saddle point, real-space rearrangements are made
in response to the topography of the problem; real-
space moves are not defined a priori but con-
structed by the system itself. This is particularly
appreciated in systems for which a complete enu-
meration of the realistic microscopic mechanisms
is not available.
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3. Algorithm and implementation

Although almost symmetric, the two steps of
the ART - the activation to a nearby saddle point
and the relaxation to a new minimum - are for-
mally very different. The relaxation to a local
minimum is a rather straightforward process.
Many algorithms have been proposed over the
years to solve this local optimization problem.
Some special care has to be taken here because the
minimization is always started near a saddle point.
Because the force is almost zero, most unbounded
algorithms will tend to make very large jumps,
risking to bring the configuration into a different
basin of attraction. It is therefore recommended to
start any relaxation process with a few bounded
steepest-descent steps before starting any higher-
level optimization procedure. For example, our
implementation of the conjugate-gradient algo-
rithm imposes a maximal allowed displacement at
each line of minimization. If this displacement is
reached, the configuration is considered to be still
far away from the minimum, and we erase the
memory of previous conjugate directions.

If the minimization procedure is rather stan-
dard, this is not the case for the search for saddle
points, which forms really the core of the method.
There is no optimization technique available for
converging to a nearby saddle point. Formally, the
only way to find all saddle points around a mini-
mum is to map the whole potential energy surface
around that minimum. This “solution” is clearly
unacceptable for systems of more than a few di-
mensions, where the amount of information re-
quired to triangulate a surface far exceeds the
capacities of the best computers available. One,
therefore, has to be satisfied with approximate
methods.

In the case where both the initial and final
minima are known, a number of algorithms exist
that search for the best connecting paths. This type
of problem is central for the identification of re-
activity paths in chemical physics [3,4]. Most of the
methods developed there, however, are not easily
applicable to situations where only one local
minimum is known.

Another solution might be to perform a ran-
dom search around a minimum in the hope of

identifying saddle points. Again, this approach,
coupled with highly damped Newtonian motion,
had some success in low-dimensional systems but
fails for systems with more than a few tens of de-
grees of freedom. As the phase space dimensio-
nality increases, the saddle points occupy a rapidly
decreasing fraction of it.

In order to find a satisfactory algorithm, it is
necessary to look at the structure of lowest-energy
paths connecting saddle points and local minima.
These are steepest descent trajectories following
the bottom of a valley from a saddle point down to
the minimum. It is of course possible to reverse the
path, and follow a steepest ascent from the mini-
mum to the saddle point. This trajectory is how-
ever highly unstable and any small deviation from
it will send the configuration to a local maximum.
A similar instability is seen with Newtonian tra-
jectories, although here local maxima are avoided
because of energy conservation.

It is therefore important to stabilize the walk at
the bottom of the valley. Analyzing in detail the
best algorithms for constraining this walk, Cerjan
and Miller [5] proposed the vector-following
method. This algorithm uses local knowledge of
the force and the Hessian matrix to constrain the
path, by minimizing the energy in all eigendirec-
tions but the softest one. Although this method
has a high probability of finding saddle points, it
requires the diagonalization and inversion of the
Hessian matrix, an O(N?) computation, and is
therefore limited to fairly small systems of at most
a hundred degrees of freedom. This is a major
limitation, especially if one is interested in bulk or
biological systems, where the number of atoms can
easily reach a thousand and more. It is therefore
necessary to find an algorithm scaling as much as
possible linearly with the number of degrees of
freedom which nevertheless can follow the mini-
mum-energy path as closely as possible.

We do so by introducing a modified force vec-
tor G which is obtained by inverting the compo-
nent of the potential force parallel to the
displacement from the current local minimum
while keeping the 3N — 1 other components un-
changed:

G=F—(1+a)(F- 7 (1)
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where F is the 3N-dimensional force calculated
from the interaction potential, # a unit vector
pointing back to the position of the current local
minimum, and o is a control parameter usually set
to 0.15/r.

Following the modified force keeps the config-
uration at a minimum along all directions but one,
while pushing upward in the direction perpendic-
ular to the displacement from the minimum. If the
trajectory to the saddle point were in straight line,
the above expression would be exactly following
the bottom of the valley. This is generally not the
case and the path oscillates around the ideal tra-
jectory. Because of this approximation, the itera-
tive process brings the configuration in the vicinity
of the saddle point but not exactly on it. Forces do
not vanish and we need another criterion for
identifying when we are close to the saddle point:
the iteration stops when the force parallel to the
displacement, F -7, changes sign, indicating that
the configuration has just passed the saddle point
and gone into a new basin of attraction.

As the force vectors span the whole space, the
search for saddle points does not impose a prede-
fined type of real-space deformation; in contrast to
real-space methods, it can involve any number of
atoms, from 1 to 100, crossing barriers of many
eV, without any additional numerical cost. We
note also that the degrees of freedom do not have
to be limited to atomic coordinates but can involve
a volume coordinate and other responses to ex-
ternal constraints.

In the close vicinity of the local minimum, the
potential energy landscape is harmonic. Applying
the modified force from anywhere in the basin
sends the configuration in one of the two softest
directions, associated to the lowest eigenmode.
These directions correspond generally to some
breathing-like modes, with large displacement and
high energy barriers and are, therefore, of relatively
little interest. In order to reach a wider range of
saddle points, it is necessary to first leave the har-
monic basin before following the modified force.

One could obviously make a large random
displacement from the minimum and hope to be
outside that region. In very compact environments
(such as metallic glasses) or fairly elastic ones (like
silica glasses), however, it is very difficult to escape

the harmonic basin by simply jumping in a ran-
dom direction since if the displacement is not or-
thogonal to the softest mode, it will align with this
mode exponentially rapidly. We therefore tend to
get better results by eliminating the softest direc-
tions. This is achieved by a series of small moves
following the opposite direction of the force. Such
a procedure is essentially equivalent to applying
the Hessian matrix many times to some initial
vector, projecting out the lowest energy spectrum
of the Hessian matrix.

We consider that the harmonic basin has been
left once the size of the force pointing back to the
minimum as compared to the total force perpen-
dicular to that direction is of the same order of
magnitude. The exact numerical value for their
ratio depends on each problem and needs to be
chosen large enough that the harmonic basin is left
behind, but not so large that a ridge could be
missed, leading the configuration directly in a new
harmonic basin.

4. Applications

ART has been applied to a wide variety of
problems. They can be classified in two broad
categories: (1) structural optimization and (2) iden-
tification and classification of diffusion and relax-
ation mechanisms. The first category is concerned
with producing low-energy structures. In this case,
the procedure used is irrelevant, only the final
product matters. In the second category, the pro-
cesses themselves are at the center of interest. This
requires more care in the selection of the interac-
tions and details of simulation.

4.1. Ideal amorphous state for the Stillinger—Weber
potential

The applicability of the Stillinger—Weber (SW)
potential [6] to the problem of amorphous silicon
has long been questioned. Because of the short
time scale associated with MD, however, it had
not been possible to identify clearly the ideal
amorphous state associated with this potential.
With ART, it is possible to circumvent the time
limitations and provide a clear answer to this
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question [1]. This is achieved following a three-step
procedure:

1. Using the standard SW potential and ART,
we relax a randomly packed configuration of at-
oms. The radial distribution function (RDF) of
this 1000-atom configuration is plotted as curve (b)
in Fig. 1. It can be compared with that of a
Wooten—Winer—Weaire model (WWW) [7], which
yields excellent agreement with experiment. We see
that the second-neighbor peak has a liquid-like
structure on its left side.

2. We relax another randomly packed configu-
ration of atoms with ART, this time, however,
using a modified version of the SW potential which
leads to a good agreement with the WWW RDF.
This is achieved by increasing the three-body term
of the SW potential by 50% (curve (a) in Fig.1).

3. The configuration prepared in 2 is relaxed
again with ART using the standard SW potential.
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Fig. 1. Radial distribution functions (RDFs) for amorphous
silicon produced by various means. The top two curves are
shown for comparison with the others, and show the RDF
obtained after only a local energy minimization under the SW
potential, and the RDF obtained with the WWW method. The
next curves are obtained as follows: (a) a-Si obtained with ART
using a modified SW potential and starting from a randomly
packed configuration; (b) a-Si obtained with ART using a
standard SW potential and starting from a randomly packed
configuration; (c) a-Si obtained with ART using a standard SW
potential but starting from configuration (a).

As shown in Fig. 1 (curve (c)), the configuration
evolves to a state similar to that of curve (b). We
conclude from this that the ideal disordered con-
figuration associated with the standard SW po-
tential does not correspond to a-Si but rather to a
mixture of the amorphous and liquid states.

4.2. Chemical ordering in amorphous GaAs

The microscopic details of the structure of
amorphous binary semiconductors are rather dif-
ficult to establish. This is particularly so for GaAs
where the small size difference between the two
species prohibits the identification of the nearest-
neighbors with local probes such as EXAFS. It is
therefore not possible to establish whether or not
binaries have the same topology as elemental
amorphous semiconductors. In weakly ionic ma-
terials, the chemical cost associated with creating
homopolar (wrong) bonds is in competition with
the elastic strain resulting from the removal of
odd-membered rings and could therefore lead to
some frustrated network.

For simplicity, continuous random networks
without a constraint on the ring distribution are
referred to as Polk networks [8] while those with
only even-membered rings, such as fully chemi-
cally ordered amorphous materials, are called
Connell-Temkin networks [9].

As the weak ionicity of Ga and As imposes long
relaxation times to reach chemical equilibrium,
MD cannot be used directly to probe local order-
ing. The ART again, is ideal to address this
problem because it is not as sensitive as MD to the
slowing down of the dynamics.

As there exists no satisfactory empirical poten-
tial for GaAs, we use a modified SW potential
along with an additional repulsive potential de-
scribing the homopolar energetical costs:

Viep = ZeA,j {1 + cos <nr”>} (2)

@) Sij

with 4;; = 1.2 for like pairs and zero otherwise,
¢ is the energy scale of the SW potential, and
s;; = 3.6 A, the cut-off of this function.

Two networks are created, one using the mod-
ified SW potential discussed above, and leading to
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a Polk-type network, and a second using this ad-
ditional repulsive potential and leading to a Con-
nell-Temkin-type CRN. In order to allow
meaningful comparison, both networks are further
relaxed using realistic tight-binding interactions
for Si [10] and GaAs [11], leading to four different
final configurations. Overall, the structural prop-
erties of these samples are excellent. The TB-re-
laxed GaAs Connell-Temkin model yields an
average coordination of 3.95, with a single 5-fold
coordinated atom and 3.9% wrong (homopolar)
bonds. The corresponding TB-relaxed Si Polk
network, has coordination of 3.98, with three-5-
fold coordinated atoms and (optimally decorated
with Ga and As) 14.2 % wrong bonds [12].

We compare the energies of these four net-
works in Table 1 and extract the following con-
clusions: (1) For elemental networks there appears
to be no additional strain associated with the
constraint to only allow even-membered rings.
Polk’s predominance is therefore only due to en-
tropic contributions. (2) GaAs clearly prefers a
Connell-Temkin-like network and its topology is
therefore qualitatively different from that of ele-
mental amorphous semiconductors. (3) Although
not discussed here, Ref. [14] also shows that it is
almost impossible to measure indirectly the pro-
portion of wrong bonds in a-GaAs.

4.3. Relaxation mechanisms in a-Si and g-SiO;

ART events are created following closely the
physical activation paths; this allowed for the first
time to identify and classify microscopic relaxation
and diffusion mechanisms in disordered materials.
We have recently generated more than 8000 events

Table 1
Tight-binding energy (eV/atom) of the Polk and Connell-
Temkin networks when decorated with Si or GaAs®

Network TB parameters

Si GaAs GaAs (SL)
Polk -13.172 —13.450
CT —-13.163 —-13.561 —-13.450
Crystal —13.389 —13.802 —13.802

#Other results are from the TB-MD simulations of Seong
and Lewis (SL), Ref. [13].

from three independent runs on 1000-atom sam-
ples of a-Si [15,16]. We find a continuous distri-
bution for activation barriers, extending from 0 to
15 eV, with a peak at 4 eV. These events involve,
on average, the displacement of about 40 atoms,
although in most cases, only a few bonds are
broken and created. A typical event, showing only
atoms rearranging their topology and their near-
neighbors, is shown in Fig. 2.

Events can be classified in terms of topological
rearrangements of the network between the initial
and final minimum. Perfect events see 4-fold at-
oms exchanging bonds but keeping their total
coordination; in conserved events, coordination
defects diffuse around, while the overall coordi-
nation is preserved; annealing events, finally, in-
volve the creation or the annihilation of defects.
Each of these categories can be further broken
down into topological subclasses. Fig. 2 shows
the three most common types of perfect rear-
rangements. These form the basis of most events
in a-Si.

A similar study in silica glass has revealed a
completely different dynamics for this material
[17]. In particular, because of the need to maintain
chemical ordering, the perfect mechanisms of a-Si
do not have a direct counterpart. Detailed analysis
of these two models is currently in progress.

5. Conclusion

The activation relaxation technique provides a
generic approach for exploring the potential en-
ergy surface of complex systems such as amor-
phous and glassy materials as well as polymers and
bio-molecules. Working directly in the configura-
tional energy space, ART does not impose any
pre-defined atomic moves; real-space rearrange-
ment of any size can take place. This makes ART a
unique tool for identifying the microscopic mech-
anisms responsible for relaxation and diffusion in
these materials.

ART has already produced significant results
both as an optimization and a dynamical tool. In
particular, we have been able to provide the first
analysis of relaxation and diffusion mechanisms
taking place below melting in a-Si and g-SiO,. Its
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Fig. 2. Top: An ABACBD event in amorphous silicon. From left to right, the initial, saddle point, and final configurations are shown.
The dark atoms are those changing coordination. The activation barrier and asymmetry for this event are 3.9 and 0.9 eV, respectively.
Bottom: The three commonest types of perfect mechanisms in amorphous silicon, according to the topological classification in [15,16];
continuous lines are broken bonds, dashed lines created bonds, and double lines conserved bonds. ABACBD corresponds to the
mechanism proposed by Wooten, Winer and Weaire for the construction of their Sillium model.

application to the investigation of the potential
energy surfaces of other disordered systems like
alloys and proteins looks promising.
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