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Length distributions in metallic alloys
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We use the embedded-atom potential of Johnson to compute the length-distribution functions
for a large number of fcc binary metallic alloys. From these distributions, we extract the mean
lengths of the nearest-neighbor bonds, which compare well with recent extended x-ray-absorption
fine-structure (EXAFS) experiments in Ni Aug . In other cases, where EXAFS results are not
available, we compare our results with the mean lattice parameter as determined by diffraction
experiments. While the embedded-atom potential is accurate for some alloys (e.g. , Ni-Au), we show
that for alloys containing Pt, a simple central-force model is superior. The embedded-atom potential
of Johnson predicts an unexpected contraction of the Au-Au distance in Ag-rich Au-Ag alloys. We
point out that an important characteristic of any alloy potential is its ability to get the single and
double defects correct.

I. INTRODUCTION

In the last few years, the problem of length mismatch
in alloys has received considerable attention both theo-
retically and experimentally. Thorpe and co-workers
have recently solved this problem analytically for alloys
with equal harmonic spring interactions between nearest-
neighbor atoms, joined by bonds with different natural
lengths. Experimentally, the development of extended x-
ray-absorption fine-structure spectroscopy (EXAFS) has
provided more information concerning the near-neighbor
lengths in alloys. These lengths are of primary impor-
tance for a proper structural characterization and in
understanding the deviations from Vegard's law, which
states that the mean lattice parameter varies linearly
with the composition. 3

From this point of view, the study of fcc binary metal-
lic alloys is very interesting since for these compounds,
the deviations from Vegard's law are much more signifi-
cant than, for example, in semiconductors. 2 The develop-
ment of the embedded-atom-method (EAM) potentials4 s

which have given reliable results for the energies of pure
metals, with and without impurities, and binary alloys,
makes it possible to take into account, in a simple way,
some of the electronic effects. The EAM potentials are, in
general, fast to compute, allowing the use of very large su-
percells, which is important when trying to extract statis-
tical information from random alloys. The version chosen
for the present study is the Johnson EAM potential,
developed recently and possessing two major advantages
over other EAM potentials: (I) it is completely analytic
and (2) it requires no additional parameters for the alloy
once the parameters for the pure metals are fixed. The
lack of additional alloy parameters has ultimately proved
to be a problem for us, as there are no adjustable param-
eters to fit experiment. In this paper we show that the
Johnson EAM potentials are remarkably good in some
cases (e.g. , Ni~Auz ) but quite unsatisfactory in others
(e.g. , alloys containing Pt).

Deviations from Vegard's law for metallic alloys have
been known since the beginning of x-ray measurements
more than 60 years ago. Until recently, however, Ve-
gard's law was actually nothing more than an ad hoc
assumption, 3 but it has been shown that Vegard's law
is to be expected only in those cases where there is
length mismatch accompanied by no changes in the force
constants. As these conditions never occur in reality,
the discussion must always be about the magnitude and
sign of the deviations from Vegard's law. These devi-
ations are small in semiconductors, but can be much
larger in metals. During the fifties, a few models were

proposed to quantify these deviations, " but they all
started with the assumption that the solid solution forms
a perfect network, i.e., all the lengths are identical.

In this paper we present computer simulation results
from the EAM potential. %'e also present both analytic
and computer simulation results from a much simpler
spring model. This central force model (CFM) uses only
nearest-neighbor central forces between an atom and its
12 neighbors. It has the virtue that it can be solved an-
alytically in some cases, and can be used in conjunction
with the EAM results to assess the sensitivity of the re-
sults to the local environment. The CFM is completely
independent of the local configuration and incorporates
the transferability of the force constants for a particular
type of bond to all environments. On the other hand the
EAM effectively modifies the force constants of a par-
ticular bond in response to the local environment around
that bond. This is accomplished via the embedding func-
tion. We shall refer to this effect as charge transfer in the
rest of this paper. We show that the EAM potential gives
results in reasonable agreement (better than CFM) with
experiment for most of the binary alloys composed of Ag,
Au, Cu, Ni, and Pd while alloys containing Pt all devi-
ate strongly from the EAM results. In this paper we use
EAM to refer to the Johnson EAM, and note that other
versions of the EAM for alloys may well give different re-
sults. Surprisingly, we observe that the CFM gives good
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agreement; with experimental diffraction data for the Ni-

Cu, Pd-Ag and all Pt alloys. These results suppose, as
we will see in Sec. V, that the charge transfer is least im-

portant for alloys containing Pt where we can treat the
atoms as rigid objects connected by elastic springs. We
also present some analytic and computer results for the
bond-length distributions in alloys. The general features
of these distributions are not, in general, very sensitive
to the particular model and are found to be remarkably
wide, of the order of the length mismatch itself.

Another quantity of interest is the variation of the elas-
tic constants with concentration. We have computed the
bulk and shear moduli and find that these quantities are
also rather insensitive to the model used. In particular,
both the EAM and the CFM show very similar results for
the bulk modulus. As there are almost no experimental
results available for the elastic moduli in bulk alloys, the
results we present here must be considered as predictions
to be confirmed or otherwise by future experiments.

II. EMBEDDED-ATOM METHOD

As we already mentioned, the Johnson version of the
EAM potential was used for our simulations, and we
will summarize this below. In EAM, the electron-density
functions are only determined to within a scaling factor.
For pure metals, this factor rescales the embedding func-
tion. But the situation is very different in alloys where
the relation between the electron density of the two com-
ponents strongly affects the mixing energies. The inter-
est in the Johnson potential is that it is completely ana-
lytic and requires no extra parameter for the alloys. All
the parameters are determined using the atomic volume,
the cohesive energy, the bulk modulus, the average shear
modulus, and the vacancy-formation energy for the pure
metals. The approximation used by Johnson is based on
the preservation of the invariance of the energy under
a gauge transformation involving the embedding func-
tion and the pair potential. This choice of constraint
is of course as arbitrary as the arithmetic mean used
by Foiles, but has the advantage of being fairly natn-
rat within the EAM formalism. In the notation used by
Johnson, the EAM potential is defined by

where Et is the total internal energy, p, is the total elec-

tronic density due to neighbors j at site i, F(p, ) is the
embedding energy for atom i, and P(r,/) is a repulsive
ion-ion core pair potential. The prime on the summa-
tions indicates that the self-terms i = j are excluded.
The functions used in the potential are defined as fol-
lows:

(2)

and

(' ( ) o'/p' ) / ) o'/p'

F'(p) = E,' —1 —ln
t p'. i ) &p'. )

( q
~i/P'

where

and

f'(r) = f,'exp P'(r/r—', —1) (4)

III. CENTRAL FORCE MODEL

In order to get an idea of the importance of the redistri-
bution of the electronic charges in the alloy, and to gain
some perspective on the EAM model, we have compared
the results of the EAM potential with a simple nearest-
neighbor spring model (CFM). ' The total energy for an

AI B alloy is given by

P'(r ) = P', exp p'(r/r', ——1)

The parameters used in this paper are the same as those
given by Johnsons and are shown in Table I.

The EAM potential for pure metals is not restricted
by the isotropy relation Cii ——2C44 + Ci2 of the CFM,
which is rarely obeyed in metals. However the EAM po-
tential does only allow two independent elastic constants,
and as a result imposes the general EAM condition Cii
= C44 + Ciq which is reasonably well obeyed for many
fcc metals. We find (numerically) that the relation C»
= C44+ Ci2 still holds for alloys, so that there are only
two, instead of three, independent elastic constants. As
the bulk modulus I3 = [Cii + 2Cis]/3 and the Voight
average shear constant G = [3C44+ (Cii —Ci2)] /5 are
fitted in the EAM potential for the pure metals, we use
these as the two independent elastic constants for the
alloy.

TABLE I. Parameters for the Johnson EAM potential. 0 is the atomic volume (A ), and only
the ratios of the f, are relevant and the other parameters are dimensionless.

Atom
CU

AI;
Au
Ni

Pci
Pt

0
11.81
17.10
16.98
10.90
14.72
15.06

f
0.30
0.17
0.23
0.41
0.27
0.38

0 ~ 59
0.48
0.65
0.74
0.65
0.95

5.85
5.92
6.37
4.98
6.42
6.44

//

5.85
5.96
6.67
6.41
5.91
6.69

y

8.00
8.26
8.20
8.86
8.23
8.57
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(6)

where the A-A and B-B spring constants and equilibrium
lengths are taken from the parameters for the pure metal
as given by Johnson, and the additional alloy parameters
are chosen to be

2~&zz&aa
J~AA + ~~BB

(7)

which corresponds to adding half springs in series. The
natural (unstrained) lengths are

LAB 2 (LAA + LBB) . (8)

The angular brackets in the summation in Eq. (6) in-
dicate that each nearest-neighbor bond is only counted
once. The spring constants are functions of the bulk mod-
ulus B and the nearest-neighbor distance Lo (Ref. 13)

2

where u is the resulting radial displacement. The topo-
logical rigidity parameter 0 ( a" ( 1 can be computed
as a lattice integral. It is zero for a perfectly rigid lattice,
and unity for a completely floppy matrix. In semiconduc-
tors, because of the low coordination and weak angular
forces, a** varies from 0.70 to 0.82, while in fcc metals
we find that a'* = 0.24. The mean lengths are found
to be

& L &= (1 —z)LAA + zLBB,

The mean and variance of the bond-length distribu-
tion become particularly transparent within the CFM
when all the force constants are equal as the model can
be solved analytically. The mean lengths and their vari-
ances can be expressed as a function of a"', the topolog-
ical rigidity parameter, i z defined in terms of the radial
force on the 12 nearest neighbors, required to open up a
cage:

The equations for I4g~ ——I&~~ ——K~~ are not used
in this paper, except in constructing Fig. 11 and for a
limiting case in the Appendix.

The CFM defined by (7) and (8) can be solved exactly
in the dilute limit as shown in the Appendix.

It is also possible to find the effective elastic constant
K, by an effective-medium theory when the force con-
stants vary. It can be shown within the CFM that the
equations for the lengths and spring constants decou-
ple so that the effective spring constant K, is indepen-
dent of the length mismatch. From effective medium
theory, i is i4 and using the relation (7), we have

(1 —z)(I&AA —I&,) z(I&BB —Ii )+ =0,
I&.(1 —pr) + IiAApr I&.(I —pr) + IiBBpr

(16)
where pr = 2(1+a") determines the initial slope for the
conductance, which obeys the same effective-medium
equation as the spring constant. Equation (16) is a
quadratic for I&, which always is sublinear and mono-
tonic in the concentration z. As we will see in Sec. V,
these analytical results are very close to the ones ob-
tained with the EAM. The CFM is a very simple and
crude model, but gives surprisingly good results for some
of the alloys, particularly those containing Pt.

IV. COMPUTER SIMULATIONS

The computer simulation results shown in this paper
for both the EAM and CFM have been obtained by stat-
ically minimizing the total energy using a conjugate-
gradient algorithm. The simulations have been per-
formed with 4000 atoms in an fcc arrangement with a
cubic supercell and periodic-boundary conditions. In the
relaxation, all the atoms were free to move and the vol-
ume of the supercell could change while remaining cubic.
The elastic constants are computed by varying the shape
and/or size of the unit cell appropriately and re-relaxing
the system. This method leads to three figure accuracy,
which is comparable or better than the available experi-
mental results. It was found that the supercell was large
enough that it was not necessary to do any ensemble av-

eraging.

AA &=& &+~

and

& LBB & —& LAA &= a"(LBB —LAA),

L~~ & ( Lg~2 2

=( LAB + ( Lga2 2

= -z(1 —z)a'*(1 —a'*)(IBB—LAA)

LAB &—2(& LAA & + & LBB &),

with the variances of the distributions are given by

(12)

(14)

V. RESULTS

In Figs. 1—6 we compare the EAM and CFM com-
puter simulation results with diffraction data where avail-
able and with EXAFS data for Ni~ Au in Fig. 6. In
Fig. 1 for Au-Ag, the EAM results agree extraordinar-
ily well with diffraction data and are clearly superior to
the CFM results. Because Au and Ag atoms have very
similar sizes, we expected this case to be quite uninter-
esting as indeed the results are for the CFM. The ex-
perimental data show a minimum in the mean length at
about z 0.4. Fournet, using an elastic sphere ap-
proximation, predicted that the deviation from Vegard's
law should be maximum for very small length mismatch
but gave no number and was working in the virtual crys-
tal approximation. As seen in Fig. 1, the EAM follows
almost exactly the experimental data except at low con-
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FIG. 1. The mean A-A, A-B, B-B nearest-neighbor dis-
tances and the lattice parameter are shown for the alloy
Aq B . Dashes are for A-A distance; dot-dashes, for A-
B distance; dots, for B-B distance; and the continuous line is
for the mean distance. The symbols are experimental data.
The upper panel is for the embedded atom method (EAM)
and the lower panel is for the central force model (CFM). This
figure is for Aug Ag . The diffraction data for Auq Ag
(Ref. 20) is shown a.s diamonds.

centration of Au, where the diH'erence is only due to the
fact that the lattice parameter of pure Ag has not been
taken at the experimental temperature to fit the param-
eters for the EAM potential. For this alloy only, the
simulation results have been obtained using a polyno-
mial potential with a cut-oH' radius after the third shell
of neighbors. This potential is very similar to the one de-
scribed here; for more details see the paper by Johnson.
We used a longer range interaction for this alloy because

0.0 0.2 0.4 0.6 0.8 1.0

Concentration x

FIG. 3. Same as Fig. 1, except for Cup Pd . The diffrac-
tion data for Cur Pd is shown as diamonds (Ref. 23).

Johnson mentioned that it is the only one which shows
some change in energy with the range of interaction. All
the other alloys studied here are quite stable under such
a change. We note that the condition Crq ——Cq2+C44 is
not obeyed in either the pure materials or the alloy due
to the further neighbor interactions. It is worth mention-
ing that Ackland and Vitek also see a minimum with
their EAM potential but around z 0.5. The behavior
of the Au-Au bond length in this alloy is quite strange;
instead of becoming closer to the length of the Ag-Ag
bond, it decreases by more than 0.07 A (3%), close to
10 times the length mismatch. This behavior can be ex-
plained by looking at the parameters for the potential:
the easiest way for the Au atom to satisfy its need for a
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FIG. 2. Same as Fig. 1, except for Cuq Au . The diffrac-
tion data for Cur Au is shown as diamonds (Refs. 21 and
22).
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FIG. 4. Same as Fig. 1, except for Pdq Pt . The diÃrac-
tion data for Pdr Pt is shown as diamonds (Ref. 24).
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FIG. 5. Same as Fig. 1, except for Niq .Ag .

large electronic density is to become closer to another Au
atom. But, besides the mean length which agrees with
the experiment, it is impossible to tell whether or not this
behavior is real. As this behavior is probably too small
to be discerned by EXAFS, only ab initio calculations,
especially of Au-Au pairs in Ag, can give further insight
into this phenomenon.

In Fig. 2, the results for Cu-Au alloys show that the
EAM and CFM are about equally good, but do show sys-
tematic discrepancies with the diffraction results. The re-
sults for Cu-Pd in Fig. 3 give impressive agreement with
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FIG. 6. Same as Fig. 1, except for Niq Au~. The diR'rac-

tion data for Niq Au is shown as sta, rs (Ref. 18). The
EXAFS data, with error bars, is taken from Renaud et al.
(Ref. 18). The diamonds, squares, and small circles refer to
the ¹Ni,Ni-Au, and Au-Au nearest-neighbor distances, re-
spectively, and the stars are the mean lengths.

the diffraction results for both EAM and CFM. The par-
tial mean lengths are also similar, suggesting that charge
transfer effects do not make much difference here. In con-
trast the results for Pd-Pt in Fig. 4 show that the CFM is
superior to the EAM in reproducing the diffraction data.
The CFM produces a very narrow range of mean lengths
in this case with a minimal amount of bowing. The re-
sults of EAM and CFM are quite remarkably different in

Ni-Ag as shown in Fig. 5, giving bowing with opposite
signs. There is no experimental data on Ni-Ag as it; phase
separates.

In Fig. 6 we show the results for Ni-Au alloys, which
are particularly important at the present time, as this is
the only fcc metallic alloy for which there is EXAFS data
over the whole range. This alloy was chosen for the first
EXAFS study because the length mismatch between Ni
and Au is about 15', which is around the upper limit for
forming solid solutions. The EAM results are good for
all the partial length distributions and clearly superior to
the CFM. Note that some of the error bars on the EXAFS
results are quite large. Note also that the EAM and CFM
give bowing of opposite sign for the mean length. The
difference between these two sets of results, suggests that
charge transfer effects are significant in Ni-Au alloys. The
agreement obtained here between experiment and EAM
is good. The large experimental uncertainties at low Ni
concentration cannot discriminate between the EAM and
the results with the Morse potential, used by Renaud ef
al. ,

8 but the Morse potential gives a crossing of the ¹Ni
and Ni-Au curves which is perhaps less acceptable than
our results. Comparing with earlier EAM simulations
by Ackland and Vitek, using the Finnis-Sinclair model
for Cu-Au and Au-Ag, and Foiless using the Daw-Baskes
model for Cu-Ni, we see that the overall behavior of the
Johnson EAM potential produces a smoother variation
of the lattice constant with concentration.

In Figs. 7—9 we show only the more successful of the
EAM and CFM results for each alloy, as determined by
comparison with the diffraction data. In all nine cases
shown, one method was clearly superior to the other.
Surprisingly, when examining our results in Figs. 1—9, the
CFM is superior to the EAM in at least as many cases
as the EAM is superior to the CFM. Table II also shows
that there is no clear preference for one approach over
the other, which was of considerable surprise to us. With
alloys containing platinum, the Johnso n EAM potential
does not give the right curvature for the mean length.
Johnson already showed that his potential is weaker for
Pt. It seems that the crude electronic model used in the
embedded-atom method is not sufFicient for platinum.
But surprisingly, we found that the CFM (with no ad-
justable parameters) is in very good agreement with the
mean experimental nearest-neighbor distance for all but
one alloy for which the embedded-atom potential fails
(see Table II). In Figs. 8 and 9, the simulations using
the CFM and the diffraction results for the Pt-Ag, Pt-
Au, Cu-Pt, and Ni-Pt are shown. There are small dis-
crepancies for the ¹iPtalloy, although the curvature is
negative, the same as in the experimental results. For
Pd-Pt, shown in Fig. 4, the CFM does not give bet-
ter agreement with experiment than the EAM potential,
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FIG. 7. Showing the EAM results for Cu ~ Ag,
Pdq Au, and Nip Pd in the three panels. In all cases, we
show only the EAM results which were clearly better than the
CFM results when compared with diffraction data (Refs. 23,
25—27).

Concentration x

FIG. 9. Showing the CFM results for Ptq Au,
Cup Pt, and Nip Pt in the three panels. In all cases we
show only the CFM results which were clearly better than the
EAM results when compared with diffraction data (Ref. 23).

both having the wrong sign for the deviation from Ve-
gard's law. Figure 8 shows CFM simulations for Ni-Cu
and Pd-Ag, which we see agree with the experimental
data. It has been shown that semiconductors can be de-
scribed analytically by a simple harmonic spring model
(with angular forces)~s because they approximately obey
Pauling's rule of additivity of atomic radii, as expressed

2.9-

in Eq. (8). Our results would suggest that platinum al-

loys also respect the Pauling rule with no or little anhar-
monicity in the potential.

A selection of our results for t, he elastic constants are
shown in Fig. 10; experimental elastic data for alloys are
virtually nonexistent. But the smooth, rather uninterest-
ing, behavior in every case might lead us to suppose that
they are not too far from the real behavior, especially
as the CFM and EAM give very similar results. The re-
lation Cqq ——C44 + Cqq holds for every concentration z
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FIG. 8. Showing the CFM results for Pdq Ag
Niq Cu, and Ptq Ag in the three panels. In all cases we
show only the CFM results which were clearly better than the
EAM results when compared with diffraction data (Refs. 28,
29, 22, and 30).

Alloy
Au-Ag
Cu-Ag
Pd-Ag
Cu-Au
Ni-Au
Pd-Au
¹iCu
Cu-Pd¹Pd
Pt-AK
Pt-Au
CU-Pt
Ni-Pt
Ni-Ag
Pd-Pt

EAM Central force Fig.
1, 10

7
8
2

6, 10, 11
7
8
3
7

8, 10
9
9
9
5
4

TABLE II. Alloys for which the EAM or the CFM gives
the lattice parameter in agreement with experimental diffrac-
tion results (shown by a bullet). The crosses indicate dis-
agreement with experimental results and the blanks indicate
that no experimental data was available. The third column
refers to the figure number(s) in this paper where the results
are shown.
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FIG. &p. The bulk modulus (solid line) and the Voight

shear modulus (dashed line) for three di6'creat alloys obtained
from the computer simulation with the EAM potential as de-

scribed in the text.
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FIG. 11. The bond-length distributions for ¹iNi, ¹iAu,
and Au-Au nearest-neighbor distances in an Nip. gAup. g alloy,
computed using both the CFM (with no variation in the force
constants) and the EAM.

within the limits of the precision on the numerical cal-
culations using EAM for the alloys. In Pig. 10 we show
the bulk modulus and the Voight average shear modulus,
computed using the EAM. The results for the pure metals
are exact as they were used as input in determining the
parameters in the EAM. Computing the bulk modulus
with both the spring model and the EAM potential, we

find that its behavior is not very sensitive to the model
used, and well described by the simple effective medium
theory as given by (16). This effective medium approach
must be applied separately to the bulk and shear moduli

by fitting the end points via I~~~ and I&~~. Note that
the effective medium theory is designed to get the correct
initial slope for small g and 1 —g 14,16 We find also that
the behavior of the elastic constant is very different from
that determined by Ackland and Vitek. 7 Our calculation
shows no change of curvature with the concentration in

any of the alloys studied in this paper, as they observed
for Cu-Au. Some experiments would be useful here.

Figure 11 shows the bond-length distribution for the
CFM with alt the force constants equal and for the EAM
potential. The CFM with equal spring constants can be
solved exactly to give the result (15) for the widths, in
agreement with the simulation results shown in Fig. 11.
The widths for the three peaks for the CFM in Fig. 11
are all equal and indeed the shapes are all similar apart
from a vertical scale factor. The CFM results are rather
different from the EAM results, but have the important
common feature that the widths are comparable to the
peak separation. The full width at half the maximum,
compared to the peak separation ( I~~ ) —( 1~~ )
is given by

~~ q
- 1/2

2 z(1 —z)ln 2

where we have used Eqs. (13) and (15). The lattice en-
ters through the topological rigidity a'" . At z =

2 the
ratio (17) is much larger for metals, 1.48, than for
semiconductors, 0.18, where a similar relation exists,
so that the length distributions are wide in the metal al-

loys studied here as seen in Fig. 11.. In semiconductors
the component peaks are more separated. These results
make it very hard to justify using any virtual crystal type
of approximation for the electronic properties of alloys,
even at the crudest level.

VI. CONCLUSION

Our work gives no clear result in determining as to
whether the central force model (CFM) or the embedded-
atom method (EAM) is superior. For platinum alloys
and a few others, the CFM is clearly superior, but in all
other cases the EAM is better. This may be related to
the amount of charge transfer in the alloy. We find that
the Johnson EAM is very successful in Ni-Au alloys; the
only case in which EXAFS data is available. The sur-
prising contraction of the Au-Au bond in Ag-rich Au-Ag
alloys within the EAM, points out that more ab initio
calculations are needed for both single and pair defects
in metals. Armed with this information, it will be pos-
sible to construct EAM potentials that, will interpolate
over the whole concentration range. In the absence of
such calculations, the present results can be taken as a
guide, but with a good deal of skepticism. The CFM ex-
plains why the widths of the length distributions are so
wide, when compared to semiconductor alloys. This is
because the fcc metal lattices have a topological rigidity
parameter a" 0.24 as compared with semiconductors
where a** 0.8. The width of these distributions means
that the virtual crystal approximation is particularly in-
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appropriate in metallic alloys.
The effect of charge transfer is important in many cases

and is taken into account by the embedded-atom-method
potential and is sufficient in many cases to give the cor-
rect variation of the lattice parameter with the concen-
tration for most alloys, not containing Pt. The elastic
constants show monotonic behavior with the concentra-
tion, and seem to be insensitive to the model used.

more general case of different spring constants in the di-
lute limit. In this limit (small z), we can rewrite the
mean length

(L) = (1 —z) (L~g) + 2z(1 —z)(L~~) + z (L~~)

(A1)

(L) = (1 —2z)(L&z) + 2z(L&z). (A2)
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APPENDIX A: THE DILUTE LIMIT

In Sec. III, we consider a model where the spring con-
stants for the three types of bonds —K~~, K&~, and
K~@—are the same. However, it is possible to solve the

We have now only two types of bonds and two spring
constants: I&~~ and Ixg~. AVe can therefore modify the
solution to the dilute limit obtained by Thorpe, Jin, and
Mahanti in the random-bond case.

The equation for the average AB length is then,

(L~B)
( I&~~ (I/a'* —1)

AA+
Il&AA(1 —/~- —&) + &&Ax] )

x(L„~ LA~). (A3)

Setting I&~~ = If~rr = I&, we are back to Eq. (14),
which is valid for any z.

'M. F. Thorpe and E.J. Garboczi, Phys, Rev. B 42, 8805
(1990).
Y. Cai, N. Mousseau, and M. F. Thorpe (unpublished).
L. Vegard, Z. Phys. 5, 17 (1921).
M.S. Daw and M.I. Baskes, Phys. Rev. B 29, 6443 (1984).
M.W. Finnis and J.E. Sinclair, Philos. Mag. A 50, 45
(1984).
S.M. Foiles, Phys. Rev. B 32, 7685 (1985).
R.A. Johnson, Phys. Rev. B 37, 3924 (1988).
R.A. Johnson, Phys. Rev. B 39, 12554 (1989).
R.A. Johnson, Phys. Rev. B 41, 9717 (1990).
Y. Cai and M. F. Thorpe (unpublished).
G. Fournet, J. Phys. Radium 14, 374 (1953); J. Friedel,
Philos. Mag. 46, 514 (1955).
K.W. Jacobsen, Comments Cond. Mat. Phys. 14, 129
(1988).
S. Feng, M.F. Thorpe, and E. Garboczi, Phys. Rev. B 31,
276 (1985).
M. F. Thorpe and W. Tang, J. Phys. C 20, 3925 (1987).
J. Chen and M. F. Thorpe (unpublished).
Y. Cai, J. S. Chung, M. F. Thorpe, and S. D. Mahanti,
Phys. Rev. B 42, 8827 (1990).
G.J. Ackland and V. Vitek, Phys. Rev. B 41, 10 324 (1990).
G. Renaud, N. Motta, F. Landon, and M. Belakhovsky,
Phys. Rev. B 38, 5944 (1988).

Hume-Rothery, Electrons, Atoms, Metals and Alloys
(Cassies Co. , London, 1948).

L. Karmazin, Czech. J. Phys. 19, 634 (1969).
J.O. Linde, Ann. Phys. (Leipzig) [Folge 5] 15, 249 (1932);
F.C. Nix and D. Macnair, Phys. Rev. 60, 597 (1941); J.B.
Newkirk, J. Metals 5, 823 (1953).
F. Lihl, H. Ebel, and W. Baumgartner, Z. Metallkd. 62, 42
(1971).
W.B. Pearson, Handbook of Lattice Spacing and Structure
of Metals and Alloys (Pergamon, New York, 1958).
J.B. Darby and K.M. Myles, Metall. Trans. 3, 653 (1972).
S. Nagakura, S. Toyama, and S. Oketani, Acta Metall. 14,
73 (1966).
A. Mealand and T.B. Flanagan, Can. J. Phys. 42, 2364
(1964).
L.R. Bidwell, Acta Crystallogr. 17, 1473 (1964).
B.R. Coles, J. Inst. Metals 84, 346 (1956).
E.A. Owen and L. Pickup, Z. Kristallogr. Kristallgeom.
Krystallphy. Kristallchem. A 88, 116 (1934); B.R. Coles,
J. Inst. Metall. 84, 364 (1955f56).
C.H. Johansson and J.O. Linde, Ann. Phys. (Leipzig) 6, 458
(1930); 7, 408 (1930); O.A. Novikova and A.A. Rudnitskii,
Zh. Neorg. Khim. 2, 1840 (1957); W. Klement, Jr. , and
H.L. Luo, Trans. Metall. Soc. AIME 227, 1253 (1963); H.
Ebert, J. Abart, and J. Voitlander, J. Less-Common Met.
91, 89 (1983).
M. F. Thorpe, W. Jin, and S. D. Mahanti, Phys. Rev. B
40, 10 294 (1989).


