
PHYSICAL REVIEW MATERIALS 6, 113803 (2022)

Machine learning surrogate models for strain-dependent vibrational
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Machine learning surrogate models employing atomic environment descriptors have found wide applicability
in materials science. In our previous work, this approach yielded accurate and transferable predictions of the
vibrational formation entropy of point defects for O(N ) computational cost. The present study investigates the
limits of data driven surrogate models in accuracy and applicability for vibrational properties. We propose an
improvement of the accuracy by extending the fitting capacity of the model by increasing the dimension of the
descriptor space. This is achieved by using a nonlinear relation between descriptors—target observables and
when it is possible by including physical relevant information of the underlying energy landscape. The nonlinear
extension is used to learn the formation entropy of defects with or without applied strain while including physical
information, such as the minimum-saddle point sequences employed for the migration of point defects, is a key
ingredient of transition state theory rate approximations. We find excellent predictive power after augmenting
the dimensionality of the descriptor space, as demonstrated on large defect databases in α-iron and amorphous
silicon based on semiempirical force fields. The current linear surrogate models are used to investigate the
correlation between migration entropy and energy. Our approaches reproduce the Meyer-Neldel compensation
law observed from direct calculations in amorphous Si systems. Moreover, the same abstract descriptor space
representation for entropy and energy is then used for the statistical correlation analysis. For linear surrogate
models, we show that the energy-entropy statistical correlations can be reinterpreted in descriptor space. This
provides a simple statistical criterion for the marginal interpretation of the compensation law. More generally, the
present work shows how linear surrogate models can accelerate high-throughput workflows, aid the construction
of mesoscale material models, and provide new avenues for correlation analysis.
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I. INTRODUCTION

The thermodynamic and kinetic properties of defects drive
the microstructural evolution of materials [1,2]. The appropri-
ate thermodynamic potential of defects, such as free energy
and enthalpy, gives the equilibrium density of defects, while
the defects’ kinetic properties steer the kinetic pathways of
the microstructure towards equilibrium. Therefore the study
of solids at finite temperature requires the correct description
of the free energy thermodynamic potential of defects. The
defects’ free energy accounts for the contribution of the sys-
tem’s microstates around a particular atomic configuration. In
materials, the morphology of defects shows the extraordinary
variety and is related to the complexity of the underlying
energy landscape.
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Defects have a wide range of shapes and sizes: from local-
ized 2D dislocation loops [3,4] to 3D clusters such as voids
[5,6], stacking fault tetrahedra [7,8], small interstitial clusters
[9], insertions with a particular crystallographic structure [10],
etc. The complexity of the energetic landscape is amplified
by the fact that those defects are embedded in a host matrix.
The complexity does not come from just the arrangement of
atoms within the defects but also from the interface between
the defects and the surrounding matrix. Very often, in order
to characterize these complex energetic landscapes, the con-
figurations of defects are indexed by the local minima of the
energy landscape and the fluctuations associated with thermal
vibrations are neglected [11–18]. Therefore the entire domain
of the free energy’s phase space R3N , of N atoms, has partic-
ular topology: it is sparse and sliced into basins of attraction,
which can be indexed with discrete labels. This approach is
similar to that used to describe atomic clusters in vacuum
[19]. Any configuration q ∈ R3N is then a member of some
discrete states, which belong to the same basin of attraction
[19]. Hence, the entire basin can be represented by the corre-
sponding local minimum to which q converges to under local

2475-9953/2022/6(11)/113803(15) 113803-1 ©2022 American Physical Society

https://orcid.org/0000-0002-0164-1745
https://orcid.org/0000-0002-3994-6771
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.6.113803&domain=pdf&date_stamp=2022-11-29
https://doi.org/10.1103/PhysRevMaterials.6.113803


CLOVIS LAPOINTE et al. PHYSICAL REVIEW MATERIALS 6, 113803 (2022)

minimization of the internal energy U (q). Within this frame-
work, probably the most common visual representation of
energetic landscape is provided by the disconnectivity graph
techniques [19–21]. For defects, it is very practical to account
for the formation free energy, i.e., the difference between the
free energy of the perfect and the defective solid containing
the same number of N atoms. The formation free energy
converges to a well-defined value in the thermodynamic
limit N → ∞ [22]. However, the kinetic evolution of mi-
crostructure is driven by the pathways and the connections of
the sequences minimum-saddle point-minimum [11,23–25].
For these kinds of sequences, the quantification of the en-
ergy contribution has been widely studied and the community
has well-established tools [12,24,26–28]. The entropic con-
tribution is still challenging to quantify because of the
methodological and numerical complexity [1,29,30].

The present study focuses on the evaluation of the
vibrational entropy Svib for minima and saddle points con-
figurations of the energy landscape in the framework of the
harmonic approximation. The vibrational entropy Svib(q) of
some defect is directly related to the curvature of the phase
space q ∈ R3N in some particular point of the potential en-
ergy surface on which the defect is located. Many alternative
methods to harmonic approximation have been designed and
tested in the community [31–39] to compute the free energy
of defects, including even the nonharmonic contributions from
energy and entropy in an indistinguishable manner. However,
these methods remain computationally very demanding as
they usually rely on sampling the phase space of the system
through the construction of random or optimized trajectories.
Furthermore, in most cases, the main limitation is not the
numerical efficiency and the poor scalability of computational
methods. There is a conceptual problem: the community does
not have the appropriate theoretical tools in order to handle
in a systematic manner the anharmonic finite temperature
vibrational entropy of a complex energy landscape. Currently,
there are no existing general sampling methods to estimate the
free energy barrier profile between two states of a complex
energy landscape. The community proposes some promising
methods for particular cases [31,33–40] where is possible to
build intuitively or automatically an ad hoc reaction coordi-
nate.

In the harmonic approximation, the vibrational entropy can
be computed from the knowledge of the frequency of normal
modes, which itself requires the evaluation and the diagonal-
ization of local Hessian matrix operations that have O(N2)
and O(N3) complexity, respectively. This traditional proce-
dure requires an interatomic interaction that can be treated
in the framework of electronic structure calculations, such as
ab initio calculations, or of empirical interatomic potentials.
This workflow can be bypassed by the recent surrogate model
proposed by Lapointe et al. [41], which proposes a linear
correlation between the atomic descriptors of the local atomic
environment and vibrational entropy. That model was applied
for point defects in crystals and nanoparticles [41] and opens
many perspectives for the fast evaluation of vibrational prop-
erties around energy-minimum configurations. Moreover, the
comparison of the surrogate model with direct calculations of
formation vibrational entropies of defects reveals an excellent
accuracy and predictive power. The direct evaluation of the

FIG. 1. Graphical abstract of the vibrational entropy calculations
using the traditional (a) and the present workflows of vibrational har-
monic entropies. Atomic configurations are generated and optimized
using the ARTN method and semiempirical potentials for α-Fe and
amorphous Si. Then, in the traditional approach (a), the system’s
Hessian matrix is computed and diagonalized in order to obtain
vibrational harmonic entropy Svib. In the present machine learning
workflow (b) to estimate Svib, we calculate the atomic descriptors of
the same atomic configurations. Then the surrogate regression model
is trained using the corresponding database of minimum and saddle
point configurations.

Hessian [O(N2)] and its diagonalization [O(N3)] is replaced
with O(N ) computational effort. The utility of such a model is
huge: the numerical efficiency increases drastically. Consider
the case of evaluating the formation entropy of a dislocation
loop containing 200 self-interested atomsin α-Fe. To avoid
finite size effects, traditional direct evaluation requires sim-
ulation cells with over 120 000 atoms. For this size, solely
the diagonalization of the Hessian matrix requires 6 hours on
3000 modern CPUs, while the surrogate model provides the
same observable, within 5% error, in less than 10 minutes on
one CPU, i.e., more than 105 faster.

The aim of this study is to explore the performance of
surrogate model approaches for other physical observables in
the field of materials science. Here, we apply the surrogate
model for amorphous systems as well as defects in crystals
under deformation. The deformed systems can be defects in
minima configurations but equally first-order saddle points
configurations. With this motivation, the previous surrogate
model [41] is revisited by integrating specific physics, such
as the metastable character of saddle point configurations.
Moreover, in order to have a better representation in the de-
scriptor space of the nondeformed minimum configurations,
we introduce a nonlinear extension of the machine learning
surrogate model. The surrogate model formalism is then used
to learn and predict the kinetical transition rates during defect
migration.

Figures 1(a) and 1(b) present the graphical summary of the
traditional and current workflow, respectively, for the com-
putation of vibrational harmonic entropies. The only inputs
required for the present surrogate model are the optimized
atomic coordinates of various defect configurations. Mini-
mum and saddle point configurations are generated employing
a 0 K method for systematic search in complex energetic
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landscapes, Activation-relaxation technique nouveau (ARTN).
The collection of found defect configurations, in α-Fe and
amorphous Si, defines the database of our machine learning
surrogate model. The efficient ARTN 0 K method is used em-
ploying an interatomic force field based on a semiempirical
potential. Then, the system’s Hessian matrix is computed and
diagonalized to obtain the vibrational harmonic entropy Svib.
Figure 1(b) emphasizes the machine learning (ML) sequence
of the workflow. Descriptors of each configuration of the
database are computed. Then, using a supervized regression
models the machine learning model is trained in order to
estimate Svib.

The paper is structured as follows. In Sec. II, we summa-
rize the link between the vibrational entropy and the Green
function formalism. The latter enables the total entropy of the
system to be decomposed into local atomic contributions. In
the same section, we describe the descriptor space used in
order to obtain an appropriate representation of the atomic
environments. The construction of this space is based on
the encoding, using atomic descriptors, of the local atomic
neighborhood of each atom by preserving all the geometrical
invariances. In Sec. III, we explore the limits of the present
nonlinear extension of the surrogate model in order to increase
the accuracy of vibrational entropy predictions when the sys-
tem is constrained to a small deformation ε. The efficacy of
our approach is demonstrated on strained defects in α-Fe. In
Sec. IV, we use our approach to build a surrogate model for
attack frequencies, in particular for the logarithm of the at-
tack frequency, which is proportional to a vibrational entropy
difference between the initial minimum atomic configuration
and the saddle point configuration. The model is applied for
the case of amorphous silicon. In Sec. V, the same surrogate
model architecture is employed to predict the transition en-
ergy barrier, giving a complete surrogate model for harmonic
transition state theory rate calculations. We use linear surro-
gates models to investigate the correlation between migration
energy and entropy. Within the present framework we give a
statistical insight of the compensation Meyer-Neldel law from
the perspective of the energetic and entropic surrogate models
and descriptor space.

II. THE HARMONIC VIBRATIONAL ENTROPY AND
GREEN FUNCTIONS

The normal modes of a system with N atoms are obtained
from the spectrum of the dynamical matrix D̃:(

D̃ − ω2
νI

) · êν = 0, (1)

where I is the identity matrix. When the dynamical matrix
includes only the phonons from the center of Brillouin zone,
it reduces to the mass normalized Hessian operator of the
system: M− 1

2 · H · M− 1
2 , where M is a diagonal matrix which

return the mass of each atom. For unary systems of mass
m, M = mI. The Hessian is built from the second deriva-
tives of the potential energy U (q) of the system: Hiα jβ =
∂2U/∂qiα∂q jβ . Vibrational mode (or � point phonons) fre-
quencies ω2

ν and displacements êν are the eigenvalues and
eigenvectors of the above secular equation (1). At high tem-
perature T (above the Debye temperature in crystalline solids)
in the so-called harmonic approximation, the classical vibra-

tional entropy of the system becomes

Svib(T, N ) = kB

∑
ν

[
ln

(
kBT

h̄ων

)
+ 1

]
, (2)

where kB and h̄ are the Boltzmann and Planck constants,
respectively.

A. Green function formalism for vibrational entropy
calculations

Within the harmonic approximation, vibrational entropy
estimation requires the full spectrum of the secular equa-
tion (1). The Green function formalism provides an iterative
solution to the mentioned eigenproblem. The total density
of states of vibrational modes �(ω) is extracted from the
imaginary part of the trace of Green function G ∈ C3N×3N

[23]:

�(ω) = 2ω

π
�(Tr{G(ω)}), (3)

G(ω) =
∑

ν

êν ⊗ êν

ω2
ν − ω2

= [D̃ − ω2I]−1, (4)

and the above total density of state (DOS) of �-point phonons,
�(ω), verifies the following constraint with respect to the
degrees of freedom of the system under 3D periodic boundary
conditions: ∫ ∞

0
�(ω)dω = 3N − 3. (5)

We can express the classical vibrational entropy of the system
at a given temperature T , from the total density of vibrational
modes states:

Svib = −kB

∫ ∞

0

[
ln

(
h̄ω

kBT

)
− 1

]
�(ω)dω. (6)

Very often, the eigenmode (êν , ων) is delocalized over sev-
eral atoms. For example, low energy and large wavelength
Rayleigh phonons induce concerted atomic motions across the
entire system. However, the local contribution to Svib

i can be
deduced [23] by transforming from the delocalized basis êν of
the Green function in Eq. (4) to a localized basis êiα of atomic
sites, which will yield the local density of states �i(ω). This
transformation is not unique, and, in the next section, we will
choose the standard local projection.

B. Local basis for densities of states of vibrational modes

The orthonormal bases of normal modes êν and atomic
sites êiα (where êiα are unit vectors for displacement of atom i
along direction α) are both complete over the configurational
phase space, and are therefore related by a unitary transforma-
tion:

êν =
∑

i

∑
α

ξ iα (ν) êiα, (7)

where the square of the rotation matrix elements, |ξ iα (ν)|2,
can be seen as the probability of the mode êν to be localized
on atom i and along the α direction.
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By analogy with Eq. (4), the local density of state of �-
point phonons reads

Tr(G(ω)) =
∑
i,α

êiα · G(ω) · êiα, (8)

�i(ω) =
∑

α

2ω

π
�(êiα · G(ω) · êiα ), (9)

where �(·) selects the imaginary component, giving a local
vibrational entropy

Svib
i = −kB

∫ ∞

0

[
ln

(
h̄ω

kBT

)
− 1

]
�i(ω)dω. (10)

We note that the vibrational entropy of the system is com-
pletely defined by projected normal modes on each atom.
Furthermore, in this local basis, the total entropy can be
exactly decomposed into local entropies. Regression of vi-
brational entropy can thus be achieved by a local approach
depending on the atomic neighborhood. This local problem
needs an accurate and systematic representation of the local
atomic environment as well as the fact that this projection
mixes the eigenvectors.

C. Local atomic environment encoded into local atomic
descriptors

In the heart of the current approach is the relationship
between the local density of states and the local atomic
environment. Atomic descriptors are numerical tools devel-
oped to describe quantitatively the local atomic environments
[42–46]. A large number of the methods and studies were
presented in the literature to build regression models be-
tween local physical observable and local atomic descriptors
[46–52]. In the next section, we will introduce simple models
which link the local density of states and the local atomic
environment. Even if the choice of local basis is not unique,
we will numerically show that the above local basis is a good
choice to state the proportionality of descriptors and the local
environment. The relation between the two quantities is estab-
lished by the use of local atomic descriptors that provide the
nonlinear encoding of the geometrical neighborhood of each
atom. These atomic descriptors project the atomic configu-
rations into descriptor space. This nonlinear function maps
the entire neighborhood of a central atom into a space with
fixed dimension, hence, we assume the existence of a set of
functions {Di}0�i�N such that

Di : R3N → RD,

q → Di(q),

where Di is the local atomic descriptor for the ith atom and q is
the vector of coordinates of the entire system. Moreover, D is
independent of the number of atoms in the system. Descriptor
functions should respect the symmetries of the system, i.e., ap-
plying symmetry operations (e.g., permutations, translations,
and rotations) on the input coordinate vector q should not
change the value of Di.

The notion of atomic descriptors in material science was
introduced by Behler and Parrinello [42–44]. They proposed
the G2 descriptor, which is sensitive to the radial distribution
of neighboring atoms, weighted by a Gaussian. Since then,

many descriptors have been developed by (i) introducing the
explicit angular description, as the G3 descriptor [42], (ii)
using the spectral decomposition in 3D or 4D spherical func-
tions of the atomic density [45,46], (iii) decomposition of the
total energy in many-body contributions that are expanded
in tensorial decomposition in particular basis [53–57] (iv)
particular design for a given system [58–63], (v) or using
machine/deep learning methods in order to find the appro-
priate descriptors [49,50,64,65], and (vi) hybrid descriptors
that can mix all other classes mentioned above [51]. The
dimension of the descriptor space, D, ranges from few tens
to few thousands. The dimension is flexible and is often used
to control the level of accuracy necessary to represent the local
atomic environment in the descriptor space. The numerical
cost is also proportional to D.

In this paper, we choose to work with bispectrum SO(4)
[bSO(4)] descriptor [45,46]. This descriptor is based on the
4D hyper-spherical harmonics decomposition onto the unit
sphere of R4. With this projection any function returns val-
ues in R3 as described in Ref. [45]. The local environment
of the ith atom is described as a density ρi(q), and can be
decomposed on the basis of 4D spherical harmonics

ρi(q) =
∑
k∈Ri

wkδ(q − qk + qi ) (11)

=
∑
k∈Ri

∞∑
j=0

j∑
m,m′=− j

cm,m′
i, j U m,m′

j , (12)

wk is a species-dependent weight, the cm,m′
i, j are the result of

the scalar product between the density centered on atom i and
the hyperspherical harmonic U m,m′

j . Ri is the cutoff radius
for atom i, qk and qi are the coordinates of atoms k and i,
respectively. The components of bSO(4) are defined by the
following equation:

Bi
j j1 j2 = (

cm,m′
i, j

)†
H j1 j2

(
cm1,m′

1
i, j1

⊗ cm2,m′
2

i, j2

)
, (13)

where j � jmax, | j1 − j2| � j � j1 + j2 and H j1 j2 is re-
lated with the Clebsch-Gordan coefficient of SO(4) group.
In this study, we use jmax = 4 and select only the diagonal
components j1 = j2 [45,46,66] yielding the total number of
components to 35. Otherwise stated, the cutoff distance is set
to 5 Å. The bSO(4) descriptor is an over-complete basis of
representation of the SO(3) group. In the present study, we
extend our previous formalism [41] to a quadratic machine
learning model. The main improvements of the regression
model for formation entropy or attack frequency are achieved
by increasing the dimension of the descriptor space: from 2D
(for attack frequencies) to D2 (for the formation entropy of
systems under deformations), where D is the initial dimen-
sion of the descriptor space. The higher the dimension of
fit, the more parameters are required. This high-dimensional
regression increases the risk of overfitting and decreases the
predictive power of the model. An accurate description of the
local atomic environment can be obtained using the bSO(4)
descriptor with a relatively low number (35) of components
[45,46,51] Therefore descriptor bSO(4) provides the right
balance between the low-dimensional descriptor space (crit-
ical for the ML quadratic model) and the precision of the
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representation. This low-dimensional descriptor space helps
to prevent the risk of overfitting.

III. EXTENSION OF SURROGATE MODEL FOR
VIBRATIONAL ENTROPY AT HIGHER ORDERS

In previous work [41], we have shown that the local en-
tropy Svib

i is proportional to the local atomic descriptors:

Svib
i = w · Di, (14)

where w is the weight vector that parametrizes the surrogate
model. Di = {Bi

j j1 j2}0� j� jmax such as | j1 − j2| � j � j1 + j2
is the local atomic descriptor of the atom i given by Eq. (13).
For jmax = 4.0, the number of components is equal to 35.
Moreover, this proportionality expressed in Ref. [41] is rein-
forced by the definition of harmonic vibrational entropy given
by Dederichs et al. [23], Svib as a sum of local terms on each
atom:

Svib =
∑

i

Svib
i . (15)

The above equation (15) is exact when summing over all
atoms in the system. In this study, we explore how the mere
proportionality of Eq. (14) may be enhanced beyond linearity,
e.g., by considering a quadratic model. Before introducing the
quadratic model, we introduce the following vector and matrix
notations for the rest of the study:

D =
∑

i

Di ∈ RD, D =
∑

i

Di · [Di]� ∈ RD×D. (16)

By using the above notations, our quadratic model for the
vibrational entropy reads

Svib = w · D + Tr{W · D}, (17)

where w is the weight vector of the linear model (14) and
W ∈ RD×D is a learnable matrix. We note that D/N and
D/N − DD�/N2 give the descriptor means and sample co-
variances, respectively. An equivalent way of writing this
quadratic model is given by

Svib =
∑

i

[w · Di + W : Di ⊗ Di

+ o(‖Di ⊗ Di ⊗ Di‖)], (18)

where : Denotes the double contraction operator. The
second term reads W : Di ⊗ Di = ∑D

k=1

∑D
l=1 Wk,lDi

kDi
l .

Finally, the third term accounts to Di ⊗ Di ⊗ Di =∑D
k=1

∑D
l=1

∑D
m=1 Di

kDi
lD

i
m ek ⊗ el ⊗ em (where {ei}1�i�D

are the canonical basis of the descriptor space) and
corresponds to third order (i.e., cubic) term. In the present
study, we consider only the quadratic expansion. Increasing
the order of expansion increases the number of model
parameters and thus the fitting capacity of the model, but also
increases the risk of overfitting. We show below that a well
chosen quadratic model form gives better accuracy than the
linear model while maintaning excellent transferability.

We will call as “Extended quadratic” machine learning
(EQML) this second order formulation. The current EQML
model preserves the entropy extensiveness, is local and en-
ables direct comparison with the linear model (14). The

performances of EQML model (17) are tested on the database
of small defects under strain in bcc iron built in our previous
work [41].

A. The database: small defects in BCC iron

A point defect can be created in a perfect crystalline system
of Nb atoms by adding or removing Nd atoms. We are going to
denote with C the resultant defective structure. The formation
vibrational entropy S f ,C at temperature T reads

S f ,C (T, Nd ) = Sd,C (T, Nb ± Nd ) − Nb ± Nd

Nb
Sb(T, Nb).

(19)

By definition, the vibrational entropies of the defected struc-
ture Sd,C (T, Nb ± Nd ) and of the perfect bulk structure
Sb(T, Nb) are computed at the same volume V . Under the
harmonic approximation, the formation entropy will thus de-
pend only on the energies h̄ων of normal modes. For high
temperatures, larger than the crystal Debye temperature, such
that max( h̄ων

kBT ) 
 1, the expression becomes simply

S f ,C (Nd ) = kB ln

⎛
⎝

∏
νb

(h̄ωνb )
Nb±Nd

Nb∏
νd

h̄ωνd

⎞
⎠, (20)

where ωνb and ωνd are the frequencies of the perfect bulk and
defect configurations, respectively. This classical formulation
of the formation vibrational entropy is useful in the present
study because it is possible to assign to each defect config-
uration a single value for vibrational entropy, instead of a
function that depends on temperature (as would be the case
in the limit of quantified phonons). This formulation is not a
limitation of the present study, but a choice to demonstrate the
feasibility of current surrogate models.

To train our machine learning model we used a database
of 4506 configurations of bcc iron, including various defect
morphologies such as 2–4 self-interstitials and 4 vacancy
clusters in supercells of (8a0)3 (Nb = 1024). All these in-
stances of the defects are minima of the energy landscape
and have been generated using the ARTN method [24,67].
The activation-relaxation technique nouveau [24,67–69] is
a powerful method for searching saddle points and transi-
tion pathways of a given potential energy surface. The ARTN

method is designed to explore the energy landscape of the
system using only the lowest eigenvalue and the associated
eigenvector of the Hessian. The ARTN method is composed
of two main steps, the activation step and the relaxation step.
The activation step consists in moving the system from a
local minimum to a saddle point. The relaxation step consists
in relaxing the system, from the computed saddle point, to
another local minimum. At the end the ARTN method provides
0 K minimum-saddle point-minimum sequences. All the 4506
minima configurations are different. In order to obtain a more
complete dataset, we perform data augmentation. On the ARTN

minimum configurations of the dataset, we have applied a ho-
mogeneous and isotropic strain of −1% to 3%, resulting in a
total of 22530 configurations. Reference harmonic vibrational
entropies are computed by using molecular dynamics simu-
lations with LAMMPS [70] and the PHONDY package [71–73]
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FIG. 2. Illustration of the performance of linear and EQML surrogate models using deformed supercells of I2−4/V4 clusters and by using
bSO(4)4 descriptor. The initial configurations have a (8a0)3 volume and have been deformed by applying an homogeneous and isotropic
dilatation of the supercell. The deformation rates range from −1% to 3%. Figures illustrate the performances of linear (a) and EQML (b) of
surrogate models.

from the direct evaluation of vibrational spectrum. PHONDY

package enables the evaluation of the phonon spectrum of
crystalline systems by direct diagonalization of the dynamical
matrix of the system [1,71–73] and allows the computation
of vibrational properties in the framework of the harmonic
approximation. We use the modified embedded atom potential
(MEAM) developed by Alireza and Asadi [74]. Descriptors of
each configuration have been computed by using the MILADY

package [51,52,75].

B. Train/test procedure

The linear model is parametrized with the same procedure
described in [41] using Eq. (14). The parametrization of the
EQML model is sequential, in two steps procedure, being
preconditioned by the linear model and then adjusting the
quadratic part. Firstly, we set the values of the linear model,
w in Eq. (17) by a linear fit using Bayesian ridge regres-
sion. Secondly, the target property becomes the differences
Sk ≡ Sk − Ŝlin

k for each configuration k, where Ŝlin
k is the

estimation of Sk with the linear model. The values of the
elements of the tensor W , in Eq. (17), are parametrized using
Sk values using the same Bayesian ridge regression. All the
fitting procedure is performed with ridge Bayesian regression
by using SCIKIT-LEARN package [76] (the initial value of σw

Bayesian prior has been set by default).
The robustness and the transferability of the surrogate

EQML model is checked by performing a train/test proce-
dure. Here, we define two statistical quantities in order to
evaluate the quality of the surrogate model:√√√√ 1

M

M∑
k

(
Ŝvib

k − Svib
k

)2
(RMSE), (21)

1

M

M∑
k

∣∣Ŝvib
k − Svib

k

∣∣ (MAE), (22)

where Svib
k and Ŝvib

k are the formation entropy and the predicted
formation entropy of the kth configuration, respectively.
RMSE and MAE are the root mean square error and the
mean absolute error, respectively. The database configurations
were randomly divided into two sets at a certain ratio of p.
The percentage of the training configurations is set at (1 − p)
(from the total database) and the rest of the database, with a
ratio of p, is reserved for tests. The surrogate model is fitted
on the training set and the predictions are evaluated for the
test set. RMSE and MAE are calculated for both sets. In order
to reduce bias of the random procedure selection, we iterate
the procedure a hundred times for a given ratio of p and we
average the value of RMSE and MAE for the training and test
set.

C. The performance of the EQML surrogate model

Here, we compare the two regression models presented in
the previous sections: (i) The linear model given by Eq. (14)
and (ii) the EQML model given by Eq. (17). The comparison
is made using Fig. 2: Linear machine learning approach from
Ref. [41] is presented in Fig. 2(a) while EQML model is
presented in Fig. 2(b). Both models, linear and quadratic,
use the same parametrization for the bSO(4) descriptor, i.e.,
j max = 4.0 and the cutoff radius is set to 5 Å . The num-
ber of dimensions for linear and quadratic fit are D = 35
and D + D(D + 1)/2 = 665, respectively. EQML model pro-
vides better RMSE/MAE fit errors than the simple linear
model. The nonlinearity of EQML model introduces coupling
between descriptor components giving larger fit capacity. For
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each class of deformations, EQML model has lower RMSE
(0.34 kB) compared to linear model, 0.82 kB. From the learn-
ing curves presented in the insets of Fig. 2 it is possible to
deduce that the linear model is transferable even for a very
small fraction 1 − p. EQML remains stable even for large
test / small train database’s partition. EQML learning curves
emphasize small over-fitting behavior for the ratio p > 0.7.
Even under these conditions, the RMSE of EQML model is
inferior to the linear model. It is important to note that the
additional quadratic term preserves the good transferability
capacity of the linear model. The strong linear preconditions
of the quadratic parametrization keep the characteristics of the
linear fit. Moreover, as we pointed out in Ref. [41], the infor-
mation provided by the local vibrational modes is sufficient
to quantitatively recover vibrational modes properties, even if
they are delocalized over the cutoff distance of descriptors.

IV. APPLICATION OF LINEAR MODELS FOR HARMONIC
TRANSITION STATE THEORY (HTST)

The kinetic pathways of the microstructural evolution of
the system are driven by the migration energies / free ener-
gies landscape. Sequences of minima and saddle points drive
complex phenomena such as the agglomeration of defects in a
larger structure, e.g. a dislocation loop [77] or the mobility
of the dislocations [1,78]. In the following, we will call a
sequence of connected minimum-saddle point-minimum as an
event E . The transition rate is the probability of realization of
that event in a specific order. The migration coefficients can
be computed from the transition rates between the relevant
minima of the energy landscape [13,15,79–82]. As such, the
transition rates are observable of paramount importance in
the implementation of multiscale simulations such as kinetic
Monte Carlo (KMC), whatever the variant: objects [83–89],
events [90–93], or off-lattice framework [11,94]. Each varia-
tion of the KMC method mentioned above has a special recipe
for defining the physical reality corresponding to the transition
rate. In object KMC, for example, each rate is associated to
an atomistic transition rate of a particular defect which is the
main concept of the present study. The event and off-lattice
KMC deals with rates, which correspond to some physical
phenomenons such as collective migration and reaction of
defects.

Let’s consider an event E , which is defined by two in-
stances: the initial minimum state E, m and an associated
saddle point state E, s. We define the rate from state E, m
to state E, s as RE,m→s. The overall sequence of the event
contributes to the transition rate [95,96]. However, within the
framework of the most used approximation in computational
materials science for the transition rate, namely the transition
state theory (TST) [95,97], only the initial minimum and the
saddle point of the events account for the transition probabil-
ity. In the harmonic approximation, the transition rates gives
[95,97]

RE,m→s = ν∗
E,mse

−βEE,m→s , (23)

where β = (kBT )−1, EE,m→s is the energy difference be-
tween the saddle point and the minimum and ν∗

E,ms is the
attack frequency defined in the framework of harmonic

TST as

ν∗
E,ms =

∏
νm′ ∈S(E,m) νm′∏
νs′ ∈S(E,s) νs′

, (24)

where the numerator is the product of frequencies at the
minimum S (E, m) and the denominator is the product of fre-
quencies at the saddle point S (E, s). By S (E, m) and S (E, s),
we denote the ensemble of the Hessian spectrum at the mini-
mum (E, m) and saddle point (E, s) configuration of event E ,
respectively. Obviously, the unstable modes such as the three
zero modes due to the periodic boundary conditions as well
as the imaginary mode of the saddle point are not included in
ensemble S . In practice, under harmonic approximation, ν∗

E,ms
is obtained by diagonalizing the dynamical matrix of the sys-
tem’s minimum and saddle point. The numerical complexity
of this procedure is O(N3) and limits the size of the routinely
studied systems to a few tens of thousands of atoms. Due to
this complexity, the majority of multiscale studies use phe-
nomenological laws of unique value for the attack frequencies
(such as the Debye frequency for crystalline materials). Here,
we propose to extend the linear machine learning approach
in the descriptor space to compute and predict the attack
frequencies for a collection of events {E i}. In this way, as in
the case of formation vibrational entropy, we avoid a direct
diagonalization of the dynamical matrix which is replaced by
the O(N ) operation of computing descriptors.

A. Reformulation of the attack frequency

For the attack frequency defined in Eq. (24), it is better to
handle the logarithm of frequencies for ensemble S , which are
positively definite.

ln(ν∗
E,ms) =

∑
νm′ ∈S(E,m)

ln(νm′ ) −
∑

νs′ ∈S(E,s)

ln (νs′ ), (25)

which can be related to the density of states � j (ω) for the jth
state of the system:

∑
ν j′ ∈S(E, j)

ln (ν j′ ) =
∫ +∞

0
ln

( ω

2π

)
� j (ω)dω. (26)

Similarly, the logarithm of the attack frequency can be de-
composed into local contributions. The associated surrogate
model can be set up using a linear model in descriptor space.
The regression model attack frequency - descriptors now has
the following formulation:

ln(ν∗
E,ms) = w1 · (DE,m ⊕ DE,s), (27)

where DE,m/s = ∑
d∈E,m/s Dd ∈ RD is the total descriptor

vector for E, m or E, s. We denote by · ⊕ · the direct con-
catenation operator for two descriptor vectors. This extended
descriptor space is sufficiently general to capture the fact that
the evaluation of reaction rate RE,m→s of the event E requires
information about the minimum configuration m and the sad-
dle point configuration s. The direct sum of descriptor vectors
for states E, m and E, s gives an extended descriptor vector of
dimension 2D.
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FIG. 3. Illustration of the linear model to adjust the (ln) attack frequencies of the amorphous Si database, where ν0 = 1 THz. The color
gradient represents the data distribution, with yellow corresponding to dense data zones. (a) shows the regression of the logarithm of attack
frequencies; the results of the train/test validation procedure are presented in the inset. The values of statistical indicators remain stable, even
for a large proportion of validation sets. (b) emphasizes the results of attack frequencies. The logarithm of noise ln(ν/ν̂ ) (ν̂ is the frequency
estimation using the surrogate model of the direct computed frequency ν from ML model) is presented as inset of (b) and follows a normal
distribution with mean μ = 0 and standard deviation σ = 0.653.

B. The database for transition rates: amorphous Si

The performance of the surrogate model for attack frequen-
cies was tested on amorphous Si. This system is a challenging
test case where each minimum of the energy landscape is
connected to a large number of saddle points. This sys-
tem was widely studied in the past using the ARTN method
[15,94,98,99]. The amorphous system is contained within a
cubic cell of 4096 atoms at constant volume. The spectrum of
partial Hessian is estimated by using the Lanczos method de-
scribed by Marinica et al. [9], and we fix the admissible error
on Lanczos eigenvalues at 1 × 10−6 (1.018049 × 10−2 ps)−2.
The amorphous Si system is explored through inherent states.
The inherent states are representative states of disordered
materials corresponding to attraction basins (local minimum
surrounded by many other minima and saddle points). Inher-
ent states give access to a potentially astronomical number of
different configurations and activation barriers. The database
of events E is generated from 20 independent inherent states
of amorphous silicon, simulated using a modified version of
the Stillinger-Weber potential [100]. To obtain inherent states,
we run canonical molecular dynamics simulations [70], with
4096 Si atoms, a fixed density of 2.192 g cm−3, and using a
timestep of 1 fs. Random configurations are first equilibrated
at 2300 K for 20 ns, and then directly relaxed (i.e. without
any intermediate quench) at 700 K during 100 ns. Finally,
the system energy is minimized using the FIRE algorithm
[101], until all components of the force vector are lower than
10−9 eV Å−1. Once initial minima are prepared, we sam-
ple saddle points with ARTN (converging towards them until
all force vector components are lower than 10−7 eV Å−1).
The connectivity of saddle points to initial minima is sys-

tematically checked using the steepest descent method, and
duplicates are removed by comparing saddle points energies
and displacements of the most displaced atom [30]. At the
end, the amorphous Si database contains an average of 420
saddle points per minimum (a total of 10502 distinct activated
events).

C. Surrogate model for attack frequencies

The surrogate model was trained using the bSO(4) with
j max = 4.0. For consistency reasons, the descriptor was com-
puted using a cutoff equal to that of the empirical potential
used to perform the MD simulations, rcut = 3.77 Å [100]. The
direct sum descriptor spans a descriptor space with 35 + 35
components. The performances of the linear model are pre-
sented in Fig. 3 for logarithm (a) and plain values (b) of attack
frequencies. The spectrum of attack frequencies is wide over
many orders of magnitude. The linear model is capable of
predicting magnitude changes in a fairly accurate manner. The
value of the ln(ν/ν0) (ν0 is fixed at 1 THz) has the RMSE of
0.65 for a range of 10 ln(ν/ν0). The results of the train/test
procedure, presented in the inset of Fig. 3(a), indicate that the
model is stable even for a small train fraction of the database.
This behavior of the present linear model is similar to that
of the previous surrogate model for vibrational formation en-
tropies [41].

The results of plain attack frequencies are shown in
Fig. 3(b), the RMSE is about 1400 THz for a range of values
from 1 × 10−1 to 1 × 105 THz. The logarithm of the stochas-
tic noise for the direct attack frequency model, ln(ν/ν̂ ) where
ν̂ is the predicted frequency, follows a normal distribution
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presented in the inset of Fig. 3(b) with a mean μ = 0 and
a standard deviation σ = 0.653. We can estimate that 98%
of the predictions ν̂ verify the following ratio 0.27 ≈ e−2σ �
ν/ν̂ � e2σ ≈ 3.7. Further analysis of the distribution of errors
will be carried out in the context of the statistical formulation
of the compensation law, in the next section.

In conclusion, under the linear formalism in descriptor
space, the attack frequencies can be inferred and predicted.
This approach is purely geometric and based on the local
decomposition of the density of states of vibrational modes,
bypassing the direct calculations and diagonalization of the
dynamical matrix. This type of approach scales like O(N )
and has the same order of magnitude as the calculation of
descriptors and could be used in any multiscale atomistic
methodology that uses transition rates.

V. THE COMPENSATION MEYER-NELDEL
LAW IN DESCRIPTORS SPACE

It is frequently found in thermally activated processes, i.e.,
following an Arhenius-like law given in Eq. (23), that when
the activation energy increases within a family of processes,
the prefactor also increases. Thus, observed first in chemistry
[102] and then in physics by Meyer and Neldel [103], the
increase of a rate prefactor somewhat “compensates” for the
decrease in the Arrhenius exponential term governing the de-
pendence on temperature. This experimental observation can
be expressed as a simple correlation between the observed
prefactor (νexp) and the slope (Eexp) of the measured Ar-
rhenius law: ln νexp = a + bEα

exp (where α is an exponent,
which usually is taken as 1). Evidence of a direct link between
the experimental measurements and numerical simulations is
difficult to obtain [30,104,105]. The main complexity is that in
experimental measured Arrhenius law there is a contribution
of many kinetic pathways for which it is difficult to account
theoretically/numerically the huge number of thermally ac-
tivated sequences of events. However, in the case of simple
energetic landscapes, a direct association can be established
between the migration mechanism and experimental observa-
tion. This is the case for self-diffusion in crystalline solids or
migration of particular defects, e.g., diffusion of ad-atoms on
metallic surfaces [106,107] or thermal activated dislocation
movements [108]. This compensation was even demonstrated
analytically in the case of well identified thermal overcoming
of energetic barriers, such as in the correlation between the
magnitude of the gap in semiconductors and the thermally ac-
tivated conductivity [109]. This compensation is explained by
some authors with the concept of multiexcitation entropy and
its consequences. When a fluctuation involving a large number
of excitations occurs, for example when a large activation bar-
rier is overcome, there must be a large entropy associated with
this fluctuation [105]. Otherwise, when the kinetic pathways
are difficult to identify, such as the migration in disordered
solids, some studies [30,104,105] describe a compensation
effect for large set of events between the average value of the
pre-exponential factor logarithm ln(ν∗

E,m→s), in a given bin
/ window of activation energy, and the energy barrier. This
correlation is called enthalpy-entropy compensation law and
results from the averaging over a large number of kinetic path-
ways [30]. Moreover, in the general framework of thermally

activated diffusion of kinetic processes, beyond an array of
interpretations all along the last 100 years, Gelin et al. [30]
recently proposed (based on numerical simulations) a general
interpretation for which the compensation is a statistical law
associated with the deformation of the vibrational spectrum
caused by the local deformations of the atomic lattice and that
can be calculated within the harmonic TST.

The goal of this section is twofold: (i) We first examine
if the present surrogate model for attack frequencies is able
to recover enthalpy-entropy compensation law that was pre-
viously identified by the direct calculations. (ii) Then, in the
framework of the linear model in descriptors space, we try to
give a statistical insight of the compensation law by the simple
fact that the present surrogate model for the activation entropy
and the activation energy share the same descriptor space.

First, let’s define the proportionality between the value
of energy barrier EE,m→s and the logarithm of attempt
frequency ln(ν∗

E,ms). We define two possible statistical corre-
lations: (i) The direct correlation of activation energy-entropy
(DCAEE) for a particular event and (ii) the enthalpy-entropy
compensation (EEC) law based on averaging many activated
events. In the case of DCAEE the correlation can be expressed
in simple terms for event i:

ln(νi/ν0) = γEi + ln(νγ /ν0), (28)

where γ in eV−1 and ln(νγ /ν0) are parameters that define
DCAEE correlation. As we have mentioned before, this law
is observed in some simple thermally activated events such as
metal conductivity [110], diffusion of ad-atoms on metallic
surfaces [106,107], dislocation glide in Zr [108], etc. The
other type of correlation is a marginal proportionality. This
average EEC relation can be expressed as

E[ln(ν(E )/ν0)|E ] = γ ∗E + ln(ν∗
γ /ν0), (29)

where γ ∗ in eV−1 and ln(ν∗
γ /ν0) are parameters. We denote by

E[ln(ν(E )/ν0)|E ] the average value of ln(ν(E )/ν0) for
each configuration whose associated energy barrier is between
E and E + δε, where δε is the width of the energy bin.
This expression has been used by Gelin et al. [30] for EEC in
thermally activated systems in materials science. We note that
the DCAEE law implies its marginal EEC definition. These
correlations have practical consequences being a “physical”
surrogate models in order to estimate the prefactor of some
transitions without doing any computations or experiments. In
the following, we give a new statistical insight of the DCAEE
compensation law by representing the energy barriers and
attack frequencies in the same descriptor space and using the
same surrogate model with just different parametrizations.

Using the formalism of the current surrogate model, we
built a linear regression model for energy barriers, using the
relation:

EE,m→s = w2 · (DE,m ⊕ DE,s), (30)

where DE,m/s = ∑
d∈E,m/s Dd ∈ RD is the total descriptor

vector for E, m or E, s. The weight vector w2 ∈ R1×2D is
parametrized using the same database of amorphous Si with
the particularity that the target property is now the barrier
energy of the event. The corresponding energy barriers have
been calculated using the same ARTN exploration. For the
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FIG. 4. The correlation between the predicted and computed en-
ergy barrier E using the linear regression between descriptors and
energy barriers on the amorphous Si database. The relative accuracy
of the linear regression model is better for barriers than for the log of
prefactors (a RMSE of 0.09 eV over a range of 6 eV).

mapping of the atomic configuration into the descriptor space
we have used the same descriptor bSO(4) with the same pa-
rameters, i.e., j max = 4.0 and the cutoff radius rcut = 3.77 Å.
Regression results are presented in Fig. 4. The surrogate en-
ergy model given by Eq. (30) provides a RMSE of 0.09 eV.
Interestingly, the regression is more accurate for the energy
barrier than for the log attack frequency. In Ref. [41], it is
shown that the accuracy performances can be explained by the
nature of the force fields. This source of errors for surrogate
models for the migration energy or the attack frequency has
exactly the same origins. With these two surrogate models
for the energy and the attack frequency we have the appropri-
ate tools to investigate the DCAEE and EEC “compensation
laws.”

Firstly, we investigate the ability of the present surrogate
model to recover the direct EEC law from Ref. [30]. We
emphasize in Fig. 5 the correlation between the value of
energy barrier E and the corresponding attack frequency, in
terms of ln(ν/ν0), using direct and machine learning surrogate
approaches. We observe a clear linear relation between E
and ln(ν/ν0). In Fig. 5(a) the blue spots emphasize the direct
atomistic calculations and in Fig 5(b) the red spots are the
predictions of the current surrogate model. Regression models
for both datasets are given in the inset in Fig. 5. The corre-
lations between E and ln(ν/ν0) for the direct method and
the surrogate model are quantitatively very close. The current
correlation coefficient is defined by the following equation:

r(ln(ν/ν0),E ) = C[ln(ν/ν0),E ]√
V [ln(ν/ν0)]V [E ]

, (31)

where C[ln(ν/ν0),E ] is the covariance between ln(ν/ν0)
and E . V is the variance of the corresponding observables.

The correlation coefficient is a quantitative measurement of
whether there is a linear relation between two quantities. If the
DCAEE law is exact, it implies this r(ln(ν/ν0),E ) = 1. The
correlation coefficient is 0.61 for the database and 0.65 for the
data predicted by the surrogate model. The current surrogate
machine learning approach is accurate enough in order to
reconstruct the correlation between the two observables.

Here, we go further. Are there particular conditions of
realization of DCAEE law that can be characterized in the
descriptor space? Let’s consider two distinct events E1 and E2

and the associated attempt frequencies ν∗
E1,m→s and ν∗

E2,m→s
such as ln(ν∗

E1,m→s) = α ln(ν∗
E2,m→s), Eq. (27) implies

w1 · (DE1,m ⊕ DE1,s − αDE2,m ⊕ DE2,s) = 0, (32)

where DE1,m, DE1,s and DE2,m, DE2,s are the descriptors of
minimum and saddle point for the two events E1 and E2,
respectively. w1 is the weight vector introduced by Eq. (27).
If we set Ei − E0 = γ ln(νi/ν0) and Ej − E0 =
γ ln(ν j/ν0), so we can deduce from Eq. (28) ln(νi/ν0) =
Ei−E0
Ej−E0

ln(ν j/ν0). If there exists a DCAEE relation, then we
can build the following relation based on Eq. (32) such as

w1 ·
(

DE i,m ⊕ DE i,s − Ei − E0

Ej − E0
DE j ,m ⊕ DE j ,s

)
= 0,

(33)

where E i, DE i,m ⊕ DE i,s are the events and the associated
descriptors for each event E i of the Si amorphous database.
w1 is the weight vector defined by Eq. (27). This orthogonality
relation is valid if the DCAEE law defined by Eq. (28) is exact.
As shown in Fig. 5 the DCAEE relation (28) is qualitatively
true but implies an imperfect correlation i.e., 0.61 instead of
1.0 for the perfect theoretical correlation. In order to quantify
the notion of orthogonality in the descriptor space, given by
Eq. (33), for the realistic case of imperfect correlations of
DCAEE law, we introduce the following vectorial quantity:
D

i j = DE i,m ⊕ DE i,s − Ei−E0
Ej−E0

DE j ,m ⊕ DE j ,s. In the end, we
focus on the following ratio:

κi j = |w1 · Di j |
|w1 · (DE i,m ⊕ DE i,s + DE j ,m ⊕ DE j ,s)| . (34)

If DCAEE law is valid, the following ratio κi j should be as
small as much as possible. For the amorphous Si dataset we
can compute the average ratio:

〈κ〉 ≡ 1

M2

M,M∑
i, j

κi j 
 1, (35)

where M is the number of events. The average value of κ over
the entire database is equal to 〈κ〉 = 0.11, which is low value.
This suggests a weak DCAEE law for this particular database.

Furthermore, for the same amorphous Si database we in-
vestigate the variance of the marginal correlation of the EEC
law. In order to compute the numerical value of bin average
of the E[ln(ν/ν0)|E ], given by Eq. (29), the barrier energies
domain E is split into 50 uniform bins, each of them having
the width δε = 0.144 eV. Consequently, E[ln(ν/ν0)|E ] is
computed with the average of ln(ν/ν0) in each bin of the en-
ergy domain. The analysis is performed, over the Si database,
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FIG. 5. Drawing the enthalpy-entropy compensation relation for the Si amorphous database. (a) shows values of E and ln(ν/ν0 )
computed with ARTN method. (b) shows predicted values of E and ln(ν/ν0 ) with linear model. The color gradient represents data distribution;
yellow corresponds to dense data zones for both types of points. Adjusted EEC relations, following Eq. (29), for both direct and surrogate
models are emphasized in (a) and (b) by white points with black contour. Both models, the direct and the surrogate, have distributions with
very close correlation indicators. Marginal variance distribution for both dataset is presented in (c) and (d) for direct and surrogate data
respectively. The marginal variance is quantitatively almost the same for both dataset.

for brute and predicted data from our surrogate model. For
both we compute the marginal variance V [ln(ν/ν0)|E ].
The marginal variance represents the width of the intrinsic
stochastic noise over ln(ν/ν0) for a bin in [E ,E + δε].
A constant marginal variance implies constant intrinsic noise
for all energy bins. Consequently, constant variance over the
entire database indicates that correlation between ln(ν/ν0)
and E is blurred by a noise with the same origin, e.g.,
induced by the same physical phenomena over the entire

range of the energy barriers domain E . Moreover, marginal
variance V [ln(ν/ν0)|E ] is a quantitative indicator of the
DCAEE law’s validity. From this perspective, the DCAEE is
a particular case of marginal law with V [ln(ν/ν0)|E ] = 0.
The less is the variance, the better is the accuracy of DCAEE
to predict ln(ν/ν0) from E .

Results of this analysis are given in Figs. 5(a) and 5(b)
emphasize the correlation between ln(ν/ν0) and E for the
Si amorphous database employing direct and surrogate model,
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respectively. Grey points indicate the marginal observable
E[ln(ν/ν0)|E ] and his estimated standard deviation. The
ajusted marginal EEC from Eq. (29) is given as an inset for
each figures. Average EEC models are very similar for direct
and surrogate models. Figures 5(c) and 5(d) draw the marginal
variance V [ln(ν/ν0)|E ] for direct and predicted data, re-
spectively. For these figures, we also give the estimated value
of standard deviation variance 2σ [V [ln(ν/ν0)|E ]]. This in-
dicator allows to quantify the uncertainty of the marginal
variance V [ln(ν/ν0)|E ]. Low deviation of marginal vari-
ance implies that DCAEE law could be extended depending
only on V [ln(ν/ν0)|E ]. From Figs. 5(c) and 5(d), it
can be noted that the marginal variance of ln(ν/ν0) re-
mains almost constant for every bin of barrier domain
E . Moreover, the marginal variance σ [ln(ν/ν0)|E ]2 =
V [ln(ν/ν0)|E ] is quite similar between direct and predicted
data. 2σ [V [ln(ν/ν0)|E ]] slightly depends on the value of
E . Consequently, the DCAEE relation can be extended by
adding only a dependency in V [ln(ν/ν0)|E ]. If we suppose
that all events present in the Si database are independent, we
can give a simple stochastic reformulation of the DCAEE
law, Eq. (28), by assuming that the stochastic noise follows
a normal distribution:

ln(ν/ν0) = γE + ln(νγ /ν0) + N (σ 2[ln(ν/ν0)|E ]), (36)

where N (σ 2[ln(ν/ν0)|E ]) is a centered normal distribution
of standard deviation equal to σ [ln(ν/ν0)|E ]. In the limit
σ [ln(ν/ν0)|E ] → 0, we find the DCAEE relation. Com-
bining the two perspectives of the compensation law, direct
correlation and marginal, allows us to give a more general
formulation of the enthalpy-entropy compensation. This for-
mulation is valid for simple (e.g., small point defects in
crystalline lattice) and disordered systems (such as the present
amorphous system).

The present statistical analysis within the descriptors
formulation of the enthalphy-entropy correlations gives
two important information. Firstly, by using two surro-
gate models—one for barrier energy and one for attack
frequency—which underlay the same descriptor space, we are
able to recover the statistical correlations of the EEC law given
by direct calculation of Gelin et al. [30]. The results, provided
by our linear surrogate models over an amorphous Si database,
emphasize the same correlations with the direct HA TST cal-
culations and are solely based on geometrical considerations.
Our statistical analysis of the compensation law underlines the
ability of the present linear models to capture the complex in-
formation about the potential surface of the energy landscape.
Secondly, the geometrical information that feed the surrogate
models is local, i.e., the descriptors on which is based the
linear models encode the geometric structure of atoms within
a cutoff distance around a central atom. It is interesting to
note that our surrogate model is able to reconstruct well the
enthalpy-entropy compensation law solely from this local ge-
ometric information. This means that the current surrogate
models enable the reconstruction of harmonic vibration quan-
tities, which are diffuse by definition. The ability of the local
surrogate model to reconstruct nonlocal components of vibra-
tional quantities implies a particular structure of the data in
the descriptor space. In fact, data in the descriptor space seem
to present a simple topology that allows for new formulations,

in terms of elementary geometry in high dimensional space,
of nontrivial physical laws in the configuration space, such as
the present Meyer-Neldel correlation law.

VI. CONCLUSIONS AND PERSPECTIVES

The current study explores the limits of machine learning
surrogate models for the vibrational properties of solids that
make a direct link between atomic geometry and vibrational
observables of interest. This current approach is developed
using the traditional harmonic approximation, which allows
vibrational properties to be exactly decomposed into local
contributions around each atom. This feature allowed the
model to be easily integrated within machine learning frame-
works. Traditional methods based on harmonic approximation
use for the evaluation of the vibrational entropy the derivatives
of the interatomic potential energy surface in particular points
of the potential energy surface, i.e., minima or saddle points.
Consequently, here we treat only the information from partic-
ular instances of the phase space such as minima or saddle
points of the first-order.

Within the framework of harmonic approximation and
transition state theory we proposed surrogate models for the
vibrational entropy that account for (i) variations under ap-
plied hydrostatic strains (ii) attack frequencies for thermally
activated events. The traditional evaluation of the system’s
Hessian and its diagonalization is bypassed; the only need is
to provide reliable atomic positions for the minimum / saddle
point configurations. In the present study, we have used the
ARTN method in order to provide those configurations.

For the present surrogate model for formation vibrational
entropy, with or without strain, compared to the previous
work, we have extended the dimension of atomic descriptors
through quadratic coupling between various components of
the original atomic descriptor. We have deduced the correla-
tion between the new atomic descriptors and the vibrational
observables within the framework of the quadratic surrogate
model (EQML). This EQML model is more accurate than
previous linear models and it is not too much less transferable.
We keep the balance between accuracy and transferability
of the fit by the parametrization procedure of the quadratic
fit, which is preconditioned by the linear fit. Furthermore,
the EQML model has very good transferability in the sense
of train/test procedure. Over a database containing various
point defects in α-Fe, we have numerically demonstrated that
this approach has better accuracy for homogeneous, isotropic
deformations from −1% to 3% strain than the previous linear
model introduced in Ref. [41].

We have replaced the local atomic descriptors with the
appropriate descriptor of the activated event, i.e., the sequence
minimum-saddle point, for estimating the attack frequency of
thermally activated processes. For this purpose, the surrogate
model uses structural information, through descriptor projec-
tion, of the geometrical configurations of the minimum and of
the saddle configuration. The relation descriptors - target local
observables is based on the linear model Eq. (14). However,
this choice is not restrictive and the model framework can be
extended to higher orders, such as quadratic EQML. This new
surrogate model has been tested on a database of activated
events in amorphous Si [30] and provides good accuracy over
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many orders of magnitude (six orders of magnitude) of the
attack frequency. This model has a good transferability with
very stable train / test learning curves.

Our study shows that it is possible to adjust the formation
entropy of defects and logarithm of the attack frequency of
their activated events only with O(N ) numerical estimation.
The present workflow avoids the time-consuming evalua-
tion of system’s dynamical matrix (O(N2)) and its spectrum
(O(N3)). The current efficient solution opens many avenues
in the field of on-the-fly exploration of complex energetic
landscapes, for example using semiautomatic atomistic frame-
works such as lattice or off-lattice and relaxed kinetic Monte
Carlo [11,83–89,94].

Finally, employing the framework of machine learning sur-
rogate models, we have proposed an insight into the statistical
analysis of enthalpy-entropy compensation law—a nontrivial
conjecture observed in several materials [104,111]. This law
states that, for a given transition event, the link between the
magnitude of the potential energy function (the value of E )
and its curvature (the value of ln(ν/ν0)). Here we give a
statistical formulation of the compensation energy - frequency
law. Sharp statistical analysis emphasizes that we are able to
reproduce the same correlation as the direct calculations by
using two linear surrogate models for the barrier energy and
the attack frequency of activated events. Moreover, by tack-
ling the DCAEE law in the descriptor space, we have provided
a geometrical insight into the conditions of realization of this
conjecture, which are quantified by an orthogonality relation.

The present formulation requires more investigation in other
systems and opens many perspectives for further investiga-
tion.

VII. CODES AND DATA

The ARTN package and databases of amorphous sil-
icon events are available upon reasonable request to
Normand Mousseau (normand.mousseau@umontreal.ca). MI-
LADY package is an open source software under ASL license
and can be downloaded in Ref. [112].
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