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Internal mechanical dissipation mechanisms in amorphous silicon

Carl Lévesque,” Sjoerd Roorda®,” Frangois Schiettekatte ©,* and Normand Mousseau ©*
Département de Physique and Regroupement québécois sur les matériaux de pointe, Université de Montréal, C.P. 6128, Succursale
Centre-Ville, Montréal, Québec, Canada H3C 3J7

® (Received 2 September 2022; revised 10 November 2022; accepted 23 November 2022; published 9 December 2022)

Using activation-relaxation technique nouveau (ARTN), we search for two-level systems (TLSs) in models of
amorphous silicon (a-Si). The TLSs are mechanisms related to internal mechanical dissipation and represent the
main source of noise in the most sensitive frequency range of the largest gravitational wave detectors as well as
one of the main sources of decoherence in many quantum computers. We show that in ¢-Si, the majority of the
TLSs of interest fall into two main categories: bond-defect hopping, where neighbors exchange a topological
defect, and Wooten-Winer-Weaire bond exchange. The distribution of these categories depends heavily on the
preparation schedule of the a-Si. We use our results to compute the mechanical loss in amorphous silicon, leading
to a loss angle of 10~* at room temperature, decreasing to 10~* at 150 K in some configurations. Our modeling
results indicate that multiple classes of events can cause experimentally relevant TLSs in disordered materials
and therefore multiple attenuation strategies might be needed to reduce their impact.
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I. INTRODUCTION

Current gravitational wave detectors (GWDs) consist of
Michelson interferometers with arms the length of a few
kilometers containing a Fabry-Perot cavity. Since 2015 [1],
GWDs have successfully detected nearly a hundred events [2],
at an accelerating pace thanks to continuous efforts. Among
the targets for improvement are the test masses: massive
dielectric mirrors at the end of each arm. Their reflective
surfaces consist of a stack of alternating high-refractive-index
(HR) and low-refractive-index (LR) materials. In the current
implementation of LIGO and Virgo, the LR material for coat-
ing is amorphous silica, and the HR material is Ti-doped
amorphous tantala [3]. Amorphous materials, especially in the
HR layers, present intrinsic fluctuations that can be directly
linked to the mechanical dissipation (Q~') and thermal noise
through the fluctuation-dissipation theorem [4—6]. Such phe-
nomena also cause decoherence in some quantum computers
[7]. Despite considerable efforts to reduce these losses in the
HR layers [8—10], low mechanical loss remains the limiting
factor of noise at frequencies around 50 Hz in major GWDs,
at which these detectors are the most sensitive [11].

Here, we investigate the origin of the mechanisms leading
to internal mechanical dissipation through atomistic simula-
tions, by finding two-level systems (TLSs). We conduct over
6 000 000 event searches for TLSs in 201 amorphous solid
configurations. This leads to the identification of 423 TLSs.

In order to simplify the problem, we investigate amorphous
silicon (a-Si), a prototypical model of a continuous random
network. a-Si consists of a single element, and its structure
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and dynamics have been under investigation for more than 50
years [12]. Beyond its generic interest, a-Si is directly relevant
in the GWD context as it is considered for future generations
of GWDs [13]: It features a high refractive index, reducing the
number of layers in the stack, and it can be synthesized with
an ultralow internal mechanical dissipation [14].

We show that (i) TLSs are distributed within the experi-
mentally relevant energy and frequency range; (ii) depending
on the relaxation state of the material, relevant events are
dominated by a dangling bond hop or the more elaborated
Wooten-Winer-Weaire (WWW) [15] bond-exchange mecha-
nism; and (iii) the loss angle deduced from our models is
compatible with experiments. Overall, these results suggest
that since multiple classes of events can be associated with
TLSs in the same frequency range in disordered materials,
multiple strategies might be needed to reduce their number.

II. THEORY AND METHODS
A. Two-level systems

Due to metastability associated with structural disorder and
a distribution in local strain, amorphous materials present,
intrinsically, more possibilities for the presence of local min-
ima separated by low-energy barriers than their crystalline
counterparts. As they evolve over time, solid-state systems
can be pictured as transiting from one local minimum to the
other in a potential energy landscape [16]. In the context
of amorphous solids, a two-level system happens when two
minima are connected by a low-energy single saddle point and
surrounded by much higher energy barriers so that the system
is locally trapped in a two-state basin.

Two-level systems (TLSs) in amorphous solids were first
introduced as a way to explain the behavior of their spe-
cific heat and thermal conductivity at low temperatures [17].
Atoms tunneling through saddle points of TLSs provide more
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FIG. 1. Potential energy landscape representation of a two-level
system. Minima 1 and 2 are connected by a saddle point, point S.
The mean barrier is V, and the asymmetry is A.

degrees of freedom to the system, increasing its heat capacity.
As illustrated in Fig. 1, a TLS can be characterized by the
energy of its saddle point (point S) relative to the minima
(states 1 and 2), called the barrier (V), and the difference in
energy between the two minima, called the asymmetry (A).

We note that while the rugged nature of the energy land-
scape of amorphous solids gives a very large, quasicontinuous
global distribution of barriers and asymmetries [18], events
are localized in space and distributed throughout all of the
sample. Therefore they can be trapped by important gaps
in the local barrier distributions, making dissipation a local
phenomenon.

Assuming that quantum tunneling is negligible and that the
system has time to thermalize in a local state after crossing a
saddle point, the mean rate at which it will transition from
minimum 1 to minimum 2, 7y, is given by the Arrhenius law

Eg—E]
712 = Tpe %87 (1

where 7, ! is the attempt frequency and E; and E; are the
energy levels at the saddle point and the first minimum, re-
spectively. While attempt frequencies can vary considerably
[19], calculations of these quantities in a-Si with the harmonic
transition state theory were found to be close to 103 s~! with
small fluctuations (see Fig. 9 in Ref. [20]). To shorten the
simulations, we shall use a constant value of tp = 10~13 s.

Because of the finite asymmetry A, 7y, is different from
751. For the whole TLS, a relaxation time t is defined as a
function of temperature 7', V, A, and 1y [21]
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Mechanical dissipation in the frequency regime of hertz
to megahertz in amorphous materials, in response to a strain
wave of frequency w, is widely thought to originate from the
excitation of TLSs [22]. Mechanical energy from the wave
(V £ A/2) can push the TLS to its saddle point. The TLS will
then relax to state 2, transforming the mechanical energy into
thermal energy. Dissipation from a given TLS will be maxi-
mized when its relaxation time [Eq. (2)] matches the inverse
frequency of the dissipated excitation. An approximation for

T = rosech(

relevant barriers is given by

V ~kgT In L 3)
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In the context of gravitational wave detectors, mirrors are
kept at temperatures ranging from room temperature down to
cryogenic temperatures of 124 K [13]. At these temperatures
and frequencies, quantum tunneling will be completely negli-
gible in comparison to thermal activation, such that Eq. (1) is
valid. Taking @ = 50 Hz, we get relevant barriers of 0.28 and
0.67 eV for temperatures of 124 and 300 K, respectively.
If the entire distribution of the TLSs is known, the inverse
quality factor, Q~!, also called the loss angle of the bulk
material, can be computed as follows:

1 1 )/iz wT; 2 A,‘
0 == L ———sech @
E F kBT 1+ (,()21'[ 2](3T

A detailed derivation for this equation can be found in
Ref. [22]. The sum runs over every TLS in the system. t; and
A; are the relaxation time and asymmetry of the TLS i. E
is the elastic modulus, and w is the frequency of the applied
strain. y; is the strength of the coupling between the TLS i and
the strain called the deformation potential. This deformation
potential can be obtained from the coupling tensor

Y = 0A/J€, 5)

where € is the strain tensor.

Both y and E depend on the nature of the strain. For
example, to compute the attenuation of a longitudinal wave
with Eq. (4), E will be the longitudinal modulus, and y will be
the longitudinal deformation potential. A detailed derivation
was carried out by Damart and Rodney in Ref. [23].

B. Atomic models

To conduct this study, we consider quenched-melt and hy-
peruniform network models.

First, 200 quenched-melt systems of 1000 atoms of a-Si
are generated. All 200 models are prepared using the molecu-
lar dynamics (MD) simulation software LAMMPS (large-scale
atomic/molecular massively parallel simulator) [24] fol-
lowing the same melt-quench procedure: 1000 atoms are
distributed randomly in a periodic box at a temperature of
3000 K, and the system is then cooled (quenched) at a (rel-
atively) slow rate of 10'' K/s, freezing in an amorphous
configuration. This method has the advantage of moderate
computing cost and melt-quench methods with a slow cooling
rate have been shown to generate samples that are in good
agreement with well-annealed experimental a-Si [25,26].

We compare these models with a nearly hyperuniform net-
work of a-Si developed by Hejna et al. [27]. This system was
built using a modified version of the WWW algorithm [15]
developed by Barkema and Mousseau [28]. The systems are
then annealed for further relaxation and meticulously com-
pared with experimental data.

While recent developments in machine-learning force
fields [26] offer an interesting alternative to empirical poten-
tials, the computational effort needed to generate a sufficient
set of TLSs (more than 6 000 000 event searches), and
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uncertainty as to the validity of these models regarding en-
ergy barriers associated with rare events, led us to turn to
well-characterized empirical potentials. More specifically, a
modified version of the Stillinger-Weber potential parameter
set, developed by Vink et al. [29], was used and applied to the
original formulation to simulate the structural and vibrational
properties of a-Si.

For our topological analysis we define a cutoff value for
two atoms to be connected at the middle point between the
first and second peaks of the radial distribution function (Sup-
plemental Fig. S1 [30]) for our configurations. This middle
point lies around 3.05 A. This cutoff definition and value are
the same as those given in Ref. [28].

C. Activation-relaxation technique

In this paper we search for thermally activated events with
characteristic times of the order of milliseconds to seconds.
Here we elect to use activation-relaxation technique nouveau
(ARTN) [31,32], a saddle-point search method that is ideally
suited for such tasks as it focuses on finding high-barrier
events (with high characteristic times) without having to com-
pute every thermal atomic vibration.

This technique samples events in the potential energy land-
scape and finds their barriers and asymmetries. Characteristic
times are then found using Eq. (2). MD-based methods can
also be used to identify saddle points in such systems [23,33].
Because of the timescale on which such a method operates
(nanoseconds), only low-energy barriers are efficiently iden-
tified. Those contribute to dissipation at low temperature or
high frequency according to Eq. (3). Hence the two methods
are complementary.

II1. RESULTS AND DISCUSSION
A. Sampling

Using ARTN, we first explore the energy landscape around
the final structure of the 200 quenched-melt 1000-atom con-
figurations. For each sample, 30 ARTN searches are conducted
per local topology. Since in amorphous materials the number
of different environments is much larger than 1000, which
is the number of local environments centered on the atoms
in each of the systems, there are 30 000 event searches
per configuration. While events with energy barriers ranging
from O to a 5-eV cutoff are generated, only events with an
activated barrier 0.2 <V < 0.7 eV are considered in this
paper because, as explained in Sec. II A, TLSs with lower
or higher barriers will not contribute significantly to internal
mechanical dissipation between the temperatures of 124 and
300 K [Eq. (3)]. A cutoff in asymmetry is chosen atV = A/3,
represented by the diagonal lines in Fig. 2, because the con-
tribution to dissipation of events with higher asymmetry is
exponentially suppressed by large A [see Eq. (4)]. Damart
and Rodney have also shown in Ref. [23] that TLSs with
larger asymmetry do not contribute to the mechanical loss.
The barrier and asymmetry of the remaining events are plotted
in Fig. 2. We note that the TLSs considered here represent
only a very small fraction of all events found in this search.

TLS events found by ARTN can be characterized by the
norm of the displacement of the main atom (i.e., the one

Asymmetry (eV)
o
o
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Barrier (eV)

FIG. 2. Barrier and asymmetry of events found by ARTN. The
gray dashed lines show the asymmetry cutoff.

moving the most) when the system transitions between two
minima of the potential energy landscape and by the number
of atoms involved in the transition. An atom is considered to
be active if its displacement is greater than 0.1 A.

Figure 3 shows the square root of the sum of squared
displacements for active atoms; the marker color corresponds
to the number of active atoms according to the scale on the
right. We see that the magnitude of the atomic displacements
is correlated with the energy barrier, although with consider-
able dispersion. In addition, a large displacement for the main
atoms is generally associated with a larger number of active
atoms (green dots). Conversely, the blue dots, representing
events with a few active atoms, are at the bottom of the graph
while the green dots, representing events with several active
atoms, are at the top. In contrast, we have not found any
correlation between local environment descriptors, such as
bond-length or bond-angle distribution or Voronoi volume,
and barriers. In general, TLS events involve between 5 and
30 active atoms, a number much smaller than the 20-150
active atoms found in oxide glasses [33,34]. This indicates
that TLSs are much more localized phenomena in a more
locally rigid structure with a higher coordination number, such
as amorphous silicon, than oxides.
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FIG. 3. Square root of squared atomic displacement in each TLS
as a function of the energy barrier for the events plotted in Fig. 2.
Symbols are color-coded according to the number of active atoms
during the event (scale at right).
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Minimum 2

FIG. 4. Example of a bond-defect-hopping event (type 1) show-
ing the system at both minima and at the saddle point. The central
atom is in red. The atoms in yellow change their bonding status
with the main atom. The green lines show the trajectory of the atoms
between the frames.

B. Categorizing TLSs

Following the classification of activated events in a-Si de-
veloped by Barkema and Mousseau in Ref. [35], we adopt a
three-class categorization based on the evolution of the bond
network during events. The first category of TLSs (type 1) is
associated with a bond hop from one atom to another. These
events usually involve the diffusion of a coordination defect,
such as dangling bond defects, and will be called bond-defect-
hopping TLSs. These jumps are typically made possible by
the movement of a single atom, leading to a relaxation of the
surrounding environment.

In the example shown in Fig. 4, the main atom (atom
B, in red) is fivefold coordinated. As for the yellow atoms,
which are the ones that change their bond with the main
atom during the process, atom A (in yellow) initially features
fourfold coordination but becomes threefold coordinated at
the end of the event. The inverse happens to atom C (also
in yellow): It is initially threefold coordinated and becomes
fourfold coordinated during the process.

The second category of TLSs (type 2) corresponds to the
(WWW) bond-exchange mechanism [15], and TLSs in this
category are called bond-exchange TLSs. This mechanism is

@ Minimum 2

FIG. 5. Example of a bond-exchange TLS (type 2). The red
atoms are the main atoms. The yellow atoms break a bond with one
red atom and form a new bond with the other red atom. The green
lines show the trajectory of the atoms between the frames.

commonly observed in a-Si [20,35] and has been described in
other amorphous and crystalline solids such as graphene [36].
It involves two connected atoms exchanging their respective
bonds between them. An example is provided in Fig. 5. Atoms
A and B (in red) stay connected at all times and exchange
their bonds with atoms C and D (in yellow). Interestingly,
these events do not depend on the presence of a bond defect to
occur, as opposed to type 1 events, and can occur in a material
featuring few voids.

The third class of events includes all TLSs that do not fit
the first or the second category. Typically, these TLSs involve
three or more atoms. While it is formally possible to further
analyze them [20,37], their diversity limits the understanding
we can gain from their detailed classification, so we will focus
on type 1 and 2 TLSs.

Figure 6 shows that bond-defect-hopping and bond-
exchange TLSs exhibit different barrier distributions. Bond-
defect-hopping TLSs are associated with lower barriers than
bond-exchange TLSs, due to the presence of a bonding defect
on the central atoms. The strain associated with these defects
increases the potential energy of the two minima and lowers
the saddle-point barrier. Asymmetries, on the other hand, are
distributed relatively evenly for all types of TLSs.
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FIG. 6. Barrier distribution of bond-defect -hopping (cyan bars)
and bond-exchange TLSs (bars outlined in black).

C. Mean trends

Local environments that support TLSs display some struc-
tural characteristics that separate them from the rest of the
sample.

These can be summarized by looking at the local density
obtained from computing the Voronoi volume surrounding
each atom. While the average density, as measured over all
atoms, is 2.20 g/cm?, the local value surrounding the dom-
inant atom associated with TLSs is only 2.08 g/cm?. These
zones of low density are associated with strained or under-
coordinated atoms, creating local instabilities that favor the
formation of TLSs. Figure 7 confirms this by showing that the
dominant atom associated with TLSs has a longer bond (top
graph, dashed and dash-dotted curves) and a wider bond-angle
distribution (bottom graph, dashed and dash-dotted curves)
compared with all the atoms of the system (black solid
curves).

D. Relation between structure and mechanical loss

Experiments have shown that thermal annealing or de-
position at high substrate temperature reduces significantly
the mechanical loss of amorphous materials [38], especially
silicon [14]. It is generally argued that this reduction is due
to thermal activation that allows the material to reach more
relaxed states.

To assess the importance of this effect here, we compare
configurations obtained by different means. More specifically,

6 ---- Bond hopping TLS
- —-—- Bond exchange TLS
=5 — All atoms
C
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FIG. 7. Smoothed distribution of the bond lengths (top) and
the bond angles (bottom) of the main active atom in the bond-
defect-hopping (blue dashed curves) and bond-exchange TLSs (red
dash-dotted curves). The black solid curves represent the first peak
and bond-angle distribution of the RDF of our a-Si configurations. A
raw histogram (blue, top) is also shown to illustrate the effect of the
smoothing.

we compare the systems discussed until now, obtained by
melt-quench models, with a nearly hyperuniform network
(NHN) model built by Hejna et al. [27] and presented in
Sec. I B.

We present some physical and structural characteristics of
samples prepared using the two methods in Table I. Despite
similar atomic densities and potential energy per atom, the
configuration obtained with a bond-exchange approach shows
a significantly lower density of point defects compared with
that obtained with a melt-quench approach.

The lower density of the NHN configuration is reflected in
its TLS distribution generated with ARTN, as before. Figure 8
shows a depleted TLS distribution in the NHN configura-

TABLE 1. Characteristics of a-Si configurations prepared by melt quench (this paper) and by bond exhange (NHN) [15,27]. Uncertainties
in the melt-quench column correspond to the standard deviation computed over 200 independent samples. N, number of defects or TLSs.

Sample Melt quench Bond exchange (NHN)
Energy (eV per atom) —3.078 £ 0.004 —3.089
Density (g/cm?) 2.200 £ 0.006 221
Overcoordination defects (N per 1000 atoms) 17+ 4 0.4
Undercoordination defects (N per 1000 atoms) T£2 0.45

TLSs found, nominal (N) 390 33

TLSs found (N per 1000 atoms) 1.95 1.65
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FIG. 8. Energy barrier distribution for the TLSs in models ob-
tained by the melt-quench and NHN preparation methods (described
in the text).

tion at low barriers (between 0.1 and 0.4 eV) as compared
with the melt-quench models. This depletion is associated
with a reduced ratio of bond-defect-hopping TLSs (type 1)
to bond-exchange (type 2) TLSs. This is not too surprising
considering that bond-hopping events have in general lower
barriers (Fig. 6) and often involve coordination defects, which
are much rarer in the NHN model as seen from Table I. Fig-
ure 9 shows histograms of the number of events by type in the
melt-quench and NHN models normalized by the number of
atoms in each model. This not only confirms the much lower
density of bond-defect-hopping events in NHN models but
also underlines that the similar strain leads to a roughly similar
total density of TLSs on both the NHN and the melt-quenched
systems (see also Table I).

E. Loss angle calculations

Knowing the microscopic details of TLSs, it is possi-
ble to compute directly the mechanical loss of a-Si using

Eq. (4). The details and approximations used are described
in Sec. IT A.
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FIG. 9. Density of the three types of TLSs in quenched a-Si
(gray) and NHN a-Si (black).
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FIG. 10. Internal mechanical dissipation computed for quenched
a-Si (black) and NHN a-Si (red). The pale curves show the contri-
butions from individual TLSs. Blue circles and blue diamonds are
experimental data in a-Si deposited at 45 and 200 °C, respectively,
from Ref. [14].

The first step is to compute the strain-asymmetry coupling
tensor in Eq. (5). We obtain this quantity by applying a small
affine deformation to both minima of every TLS. The potential
energy of each minimum is then computed. This is done for
both positive and negative strain, and results are averaged over
both. We verify that varying the amplitude of the deformation
does not change the results.

The deformation potentials for longitudinal and traverse
strain waves are then computed using the formula derived by
Damart and Rodney [23]. For the longitudinal deformation
potentials, we get values between 0.5 and 9.1 eV and a mean
value of 4.1 eV, and for the transverse case we get energies
ranging from 0.4 to 7.8 eV with a mean value of 3.4 eV.
Deformation potentials are found to be uncorrelated with the
barrier or the asymmetry. Experiments have reported aver-
age transverse deformation potentials of 1 eV [39]; however,
those experiments were conducted below 1 K, and so barriers
involved were much lower than those studied in this paper.
So we suppose the minima of active TLSs to be closer in
geometry and their deformation potential to be lower.

Mechanical loss predictions are presented in Fig. 10 for
both the melt-quench (black) and NHN configurations (red).
The thin curves represent each term in the sum [Eq. (4)],
while the thick curve is the total. The melt-quench configu-
rations lead to an almost constant Q! value close to 1073
at temperatures between 100 and 300 K. This compares well
with experimental measurements on a-Si deposited at 45 and
200 °C that show Q’1 values between 10~* and 1073 [14]. In
particular, the loss angle in our melt-quenched systems is very
close to the experimental loss angle in a-Si deposited at 45 °C.
This difference is expected because the short cooling time of
our simulations is equivalent to a low deposition temperature
in the sense that both leave little time for relaxation events to
take place.

Because we consider only one sample, the NHN system
presents a much lower absolute number of TLSs (33 vs 390),
leading to more noise: A few TLSs are causing peaks in
the dissipation for this system, namely, the ones centered at
100, 225, and 260 K. These TLSs have such high contribu-
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tions because of their very low asymmetry (0.009, 0.021, and
0.034 eV, respectively). We expect that these peaks would
flatten with more data obtained for a larger system or better
statistics.

Nevertheless, it is remarkable that the NHN configuration
yields a similar mechanical loss to that of the melt-quench
around room temperature. Dropping down to cryogenic
temperatures, however, the mechanical loss decreases signifi-
cantly, getting as low as 107> (although this result is strongly
influenced by single TLSs, such as the one producing a peak
near 100 K). In the previous section we showed that the bond-
defect-hopping TLSs, which compose most of the low-barrier
TLSs in a-Si (Fig. 9), are much less frequent in the NHN
configuration, causing the rarefaction of low barriers in this
configuration (Fig. 8). The same explanation applies here as
well, as low barriers are active at these low temperatures.
Despite the smaller sample size of the NHN causing sharp
peaks in the mechanical loss calculations, the reduction in the
number of low-barrier TLSs is very clear (Table I); therefore
this decrease in the loss angle with temperature should be
significant.

This behavior of Q! in the NHN a-Si is similar to that of
experimental hydrogenated a-Si, where the mechanical loss is
high at room temperature but decreases significantly between
300 and 10 K [40]. We validate this calculation, made on TLSs
selected in Sec. II A for consistency, by comparing it with
the the Q~' computation over all events found with barriers
less than 1.2 eV and find that the results do not change (see
Supplemental Fig. S2) [30].

IV. SUMMARY AND CONCLUSION

This study aims to identify the structural origin of internal
mechanical dissipation in amorphous solids. To do so, we
focus on a-Si, a classical reference for covalent disordered
materials. More precisely, we characterize the two-level sys-
tems (TLSs) found in 200 sets of 1000 atoms of melt-quench-
generated configurations and a single nearly hyperuniform
network (NHN) of 20 000 atoms built by Hejna, Stein-
hardt, and Torquato [27] using the WWW algorithm. Both
configurations feature similar energies per atoms; however,
melt-quench-generated a-Si has around 2.5% topological de-
fects (threefold and fivefold coordinated atoms), while the
NHN shows almost none. The potential energy landscape is
explored with ARTN [31,32]. We keep only TLSs with small
barriers (0.2-0.7 eV) and asymmetries (< V/3) because they
correspond to the experimental observation window. There are
390 TLSs in the melt-quench a-Si and 33 in the NHN that are
considered relevant to our study and further analyzed.

Loss angle calculations on these systems lead to a high loss
angle close to 103 for both NHN and melt-quench a-Si at
room temperature. While the loss angle in the melt-quench
configurations stays relatively constant with temperature,
NHN ¢-Si shows an important decrease in loss angle when
the temperature drops from 300 to 100 K, a similar behavior
to that observed experimentally in well-relaxed a-Si [14].

With the detailed information obtained through ARTN,
TLSs can be classified by the bond-network change associated
with the two-level system. Two-thirds of events fall into two
categories: bond-defect hopping and bond exchange. These

two types of TLSs are associated with different local config-
urations: Bond-defect hopping happens around coordination
defects and where bonds are stretched, and bond-exchange
TLSs are found in regions where all atoms are fourfold co-
ordinated but present small angle defects.

Our simulations demonstrate that various classes of TLSs
can occur with different concentrations according to the
preparation schedule. Quenching from a melt results in bond-
defect hopping being the dominant TLS type, because of the
high concentration of trapped point defects in these configu-
rations. The NHN of a-Si has next to no point defects. This
drastically reduces the concentration of bond-hopping TLSs
but has little effect on the concentration of bond-exchange
TLSs. From this we learn that TLSs are independent: The
presence of one type of TLSs does not depend on the existence
of other types. We also show that the types of TLSs we find in
different configurations are specific to the preparation, or the
relaxation path, of said configuration.

Investigating other systems is necessary to improve our
understanding of the atomistic origin of TLSs and internal
mechanical dissipation. Work on oxide glasses was done in
Refs. [23,33,34]. In Ref. [23], Damart and Rodney analyzed
TLSs in SiO, and found archetypes of TLSs that are different
from those found in a-Si, such as rotations of Si-O-Si chains.
This suggests that TLSs are also specific to the nature of the
material, for instance, between a-Si and oxide glasses such as
Si02 and Ta205.

This work aims to provide insight into the reduction of
thermal noise (and at the same time mechanical loss) in
the mirrors of GWDs. Here, we find that decreasing TLSs
in amorphous materials means not only understanding the
nature of events for specific systems but also addressing
separately each of the potential classes of TLSs. Our re-
sults suggest that reduction of mechanical loss in GWDs
will necessitate the suppression of each different type of
TLS. In the case of a-Si, this means directly addressing
two well-defined major categories of TLSs and a collection
of more diverse, uncategorized TLSs that make up about
a third of all TLSs, all of which may require different
strategies to eliminate, once overall strain reduction become
impossible.

Because of the importance of specificity, further study
would benefit from better physical description to ensure
that the atomistic details of TLSs are accurate. Since larger
amorphous configurations tend to better reproduce experi-
mental observations [28,41], ab initio approaches are probably
not appropriate. Recent developments in machine-learning
force fields [26] offer here a new opportunity to deepen our
understanding of these fascinating problems, as we better un-
derstand their validity for describing the rare events associated
with TLSs.

The ARTN packages as well as the data reported here are
distributed freely. Please contact N. Mousseau.
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