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ABSTRACT
In the last few years, much effort has gone into developing general machine-learning potentials capable of describing interactions for a wide
range of structures and phases. Yet, as attention turns to more complex materials, including alloys and disordered and heterogeneous systems,
the challenge of providing reliable descriptions for all possible environments becomes ever more costly. In this work, we evaluate the benefits
of using specific vs general potentials for the study of activated mechanisms in solid-state materials. More specifically, we test three machine-
learning fitting approaches using the moment-tensor potential to reproduce a reference potential when exploring the energy landscape around
a vacancy in Stillinger–Weber silicon crystal and silicon–germanium zincblende structures using the activation-relaxation technique nouveau
(ARTn). We find that a targeted on-the-fly approach specific to and integrated into ARTn generates the highest precision on the energetics
and geometry of activated barriers while remaining cost-effective. This approach expands the types of problems that can be addressed with
high-accuracy ML potential.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0143211

I. INTRODUCTION

As computational materials scientists turn their attention to
ever more complex systems, they are faced with two major chal-
lenges: (i) how to correctly describe their physics and (ii) how to
reach the appropriate size and time scale to capture the proper-
ties of interest. The first challenge is generally solved by turning to
ab initio methods1 that allow the solution of Schrödinger’s equation
with reasonably controlled approximations. These approaches, how-
ever, suffer from N4 scaling, which limits their application to small
system sizes and short time scales. The second challenge is met by
a variety of methods that cover different scales. Molecular dynam-
ics,2 for example, which directly solves Newton’s equation, accesses
typical time scales between picoseconds and microseconds at the

very best. Other approaches, such as lattice3,4 and off-lattice kinetic
Monte-Carlo,5,6 by focusing on physically relevant mechanisms, can
extend this time scale to seconds and more, as long as the diffusion
takes place through activated processes. Even though these meth-
ods are efficient, each trajectory can require hundreds of thousands
to millions of force evaluations, becoming too costly with ab initio
approaches and forcing modelers to use empirical potentials despite
their incapacity at correctly describing complex environments.

Building on ab initio energy and forces, machine-learned
potentials (MLP)7–10 open the door to lifting some of these difficul-
ties by offering much more reliable physics at a small fraction of the
cost of ab initio evaluations.

Since their introduction, ML potentials have been largely cou-
pled with MD, focusing on the search for universal potentials
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able to describe a full range of structures and phases for a given
material.11–13 As we turn to more complex systems such as alloys
and disordered and heterogeneous systems, it becomes more and
more difficult to generate such universal potentials since the number
of possible environments grows rapidly with this complexity. In this
context, the development of specific potentials with on-the-fly learn-
ing that makes it possible to adapt to new environments becomes a
strategy worth exploring.

In this work, we focus on the construction of machine-learned
potentials adapted to the sampling of an energy landscape domi-
nated by activated mechanisms, i.e., solid-state systems with local
activated diffusion and evolution. This kinetics is associated with
the aging and relaxation of disordered materials,14 sluggish diffusion
in concentrated alloys,15 and defect diffusion in complex envi-
ronments.16 Correct computational sampling, using open-ended
methods such as the activation-relaxation technique (ART)17 and
its revised version (ART nouveau or ARTn),18,19 requires a precise
description of local minima and of the landscape surrounding
the first-order saddle points that characterize diffusion accord-
ing to the transition-state theory (TST).20 These barriers can be
high—reaching many electron-volts—and involve strained config-
urations that can be visited only very rarely with standard molecular
dynamics. Yet, because of this need for long-time evolution, these
problems have been largely out of reach of ab initio approaches and
have been studied, until now, mostly with empirical potential.

More specifically, we compare three machine learning
approaches to train a Moment Tensor Potential (MTP)10,21 for
the diffusion of a vacancy in silicon and silicon–germanium alloy
as sampled with ARTn. The first approach consists of pure MD
learning, fitted at various temperatures, following steps that echo
the work of Novoselov et al.;22 the second approach adds on-the-fly
training during ARTn runs; and the third one focuses on purely
on-the-fly training during ARTn runs. While on-the-fly learning is
not a new approach and has been used before in various contexts,
it has never been compared to the specific application of activated
kinetics in solid state systems.

To generate the statistics necessary to offer solid conclusions,
we selected to use the Stilliger–Weber empirical potential both
for Si23 and SiGe.24 Clearly, the machine-learned potentials gen-
erated here have, therefore, limited physical relevance, but these
are sufficient to allow us to assess the relative quality of our three
approaches.

Results underline the efficiency gain in developing targeted ML
potentials for specific applications by comparing the cost of fitting Si
with SiGe. They also show the rapid increase in computation com-
plexity associated with moving from element to alloy systems, which
emphasizes the usefulness of a specific approach such as the one
applied here to activated processes.

II. METHODOLOGY
A. ML potential

The Moment Tensor Potential (MTP)10,21 is a linear model of
functions Bα(ri) built from contractions of moment tensor descrip-
tors defined by the local neighborhood relative position ri of atom
i within a sphere of influence of radius rc respecting a set of invari-
ances. This model has been shown to be fast while giving accuracy on

the order of ∼meV/atom and requiring a few hundred to thousands
of reference potential calls25 on-the-fly.

MTP has been used on a wide variety of problems, including
on-the-fly MD simulation,21,22,26 search and minimization of new
alloys,27,28 and diffusion processes22 on systems counting one or
multiple species. In the following, we offer a summary of the method;
more information on MTP is available in Ref. 21.

MTP approximates atomic configuration energy as the sum of
local contributions. A local contribution is obtained through a sum
over the included basis {Bα(ri)} as a linear combination of B(ri)

and ξα,

V(ri) =
m

∑
α=1

ξαBα(ri). (1)

The “level” of a potential gives the number of different possi-
ble tensor Mμ,ν(ri) descriptors. The Bα(ri) functions of Eq. (1) are
constructed by a tensorial contraction of different Mμ,ν(ri), and the
number of different tensorial contractions sets m in Eq. (1). More
information on MTP is available in Ref. 21.

The total energy of a N-atom configuration (R) is then given
by the sum of N local contributions,

E(R) =
N

∑
i=1

V(ri) =
N

∑
i=1

m

∑
α=1

ξαBα(ri), (2)

and the forces are obtained by taking the gradient of this quantity,

F(R) = −∇
N

∑
i=1

m

∑
α=1

ξαBα(ri). (3)

The parameters ξα are obtained by minimizing the loss
function,

∑
R∈A
[we(E(R) − Ê(R))2

+ wf

N

∑
i
∣fi(R) − f̂ i(R)∣

2
]→ min

ξ
. (4)

Here, A is the training set made of configurations with known
energy and forces. The goal is to minimize the difference between
E(R), fi(R) (the real value) and Ê(R), f̂i(R) (predicted by the
model), respectively, for all elements in A. Weights on contributions
from energy and forces (we and w f ) are set to one.

B. Learning on-the-fly tools
On-the-fly atomic machine learning potential (OTF) involves

the repeated training of the model potential as new atomic
environments are generated through various procedures.

Following the work of Shapeev and collaborators,21 the reliabil-
ity of the potential to evaluate a given configuration is performed
using the D-optimality criterion, which states that the best train-
ing set is the one with maximal volume. The volume can be seen
as a measure of the domain of the training set where the model
allows reliable predictions. Assuming that the training set is of max-
imal volume, any configuration within or beyond this volume is
inside or outside the known domain of the model, respectively,
which we interpret as interpolation and extrapolation. We grade the
D-optimality criterion of a given configuration by assessing the
model’s reliability. For this, Shapaeev et al. introduce a selection
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algorithm (MaxVol) that tests whether or not this configuration
should be added to the training set or replace a configuration already
in it. While a detailed description can be found in Ref. 26, we provide
here a brief summary of the retained approach.

The selection and extrapolation-grade algorithm can be applied
using either a local-energy or a global-energy descriptor.

The local-energy descriptor is presented as a rectangular matrix
GN×m formed by the basis elements Bα(ri) associated with the
neighborhood ri of all N atoms,

G =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

B1(r1) . . . Bm(r1)

⋮
. . . ⋮

B1(rN) . . . Bm(rN)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (5)

For a given configuration, the global-energy description
reduces this information to a vector g,

g = (b1(R) . . . bm(R)), (6)

where each term, {bα(R)}, is a sum over all neighborhoods for a
specific basis element, {Bα(ri)},

{bα(R)} =
N

∑
i=0
{Bα(ri)}.

For the global-energy descriptor of a given configuration with
a training set A, solving for cij, in

(c11 . . . c1m)A = g. (7)

Assuming that A is of maximal volume, 0 ≤ cij ≤ 1. Conversely, if
one finds cij > 1, then A is not of maximal volume. The latter case
means that the model is extrapolating on this configuration and
that updating A with this configuration will increase its volume.
The extrapolation grade, γ, is then defined as the largest component
of cij,

γ(R) = max∣ci j ∣. (8)

The same approach is used for the local-energy description,
applying Eq. (7) to the rows of matrix G rather than the vector g.
For non-linear and other ML potentials, in Eq. (5), one take the ML
model’s gradient with respect to its parameters.

In practice, for γ(R) below a certain threshold γ0, the model
interpolation is reliable while for γ0 < γ(R) < γmax, the model can-
not be applied with confidence but can be adapted by adding this
configuration to the training set. When γ(R) > γmax, the configu-
ration is too far from the training set and is rejected as the model
cannot be adapted with confidence. In this work, we set γ0 = 1.1
and γmax = 2.2, taking the lower values of the parameters studied in
Ref. 26 unless specified otherwise.

C. On-the-fly learning cycle workflow
Our workflow is similar to that of Ref. 21, with the main

differences discussed in Sec. II F. We follow the same general
machine-learning on-the-fly workflow for all sampling approaches
tested here.

We split each simulation into one or multiple sequences of
atomic configurations generated using either MD or ARTn. Each
run unfolds as follows (see Fig. 1):

FIG. 1. On-the-fly machine learning workflow used with MD and ARTn (on the left). A potential update can take place at two points: when the sequence ends or when
γ > γmax. The updating procedures are given in the box on the right.
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1. Launch a sequence during which configurations are generated
according to a sampling algorithm (MD or ARTn).

At each iteration step, the extrapolation-grade γ is evaluated.

(a) If 0 < γ < γmax, the energy and forces of the configuration are
evaluated with MTP;

(b) if γ0 < γ < γmax, the configuration is set aside for an update of
MTP parameters;

(c) otherwise, if γ > γmax, energy and forces of the configuration
are not evaluated with MTP, and the configuration is not kept
for the update. The sequence is stopped, and we go directly to
the update step (step 3).

2. Move on to the next iteration in the sequence (step 1).
3. The model is updated if at least one configuration has been set

aside for an update of MTP (i) at the end of a sequence or (ii)
at any moment during the sequence if γ > γmax.

4. If there is an update, restart a new sequence (go to step 1), or
stop if no configuration with γ > γ0 has been set aside during
the predefined maximum length of the sequence.

The moment tensor potential model update is defined as
follows (see Fig. 1, right-hand side):

1. A selection is made from the set aside configurations (with
γ > γ0) using MaxVol.26

2. Each selected configuration is evaluated by the reference
model.

3. The training set is updated with the new evaluated
configurations.

4. The moment tensor potential is fitted on the new training set
accordingly to Eq. (4).

More details of this procedure can be found in Ref. 26.

D. MD and ARTn
Two sampling approaches are used to generate a sequence

of configurations: (1) molecular dynamics (MD) as implemented
within LAMMPS29 and (2) the activation-relaxation technique
nouveau (ARTn) algorithm developed by Mousseau and
collaborators.17–19 Since the MD is well known, we only give
below a brief summary of ARTn.

ARTn is designed to explore the potential energy landscape of
atomic systems through the identification of local transition states
connecting nearby local minima. Its workflow can be summarized in
three main steps (see, for a recent in-depth discussion of the ARTn
version used in this work, Ref. 19) as follows:

1. Leaving the harmonic well: Starting from an energy minimum,
an atom and its neighbors are moved iteratively in a direc-
tion selected at random until a direction of negative curvature
on the potential energy surfaces, d(λmin) with λmin, the lowest
eigenvalue of the Hessian matrix, smaller than zero, emerges;
this indicates the presence of a nearby first-order saddle point.

2. Converging to a first-order saddle point: The system is then
pushed in the direction of negative curvature d(λmin) while
the force is minimized in the perpendicular plane until the

total force F passes below a threshold near F0, which indicates
the saddle point has been reached.

3. Relaxing into a new minimum: The system is then pushed over
the saddle point and relaxed into a connected new minimum.

At each step, λmin and d(λmin) are found using an iterative
Lanczos method.18,19,30 Perpendicular relaxation during activation
and global minimization are performed using the Fast Inertial
Relaxation Engine (FIRE) algorithm.32

Generated events are accepted or rejected according to
the Metropolis algorithm, where the acceptance probability p is
given by

p = min (1, e−βΔE
), (9)

with ΔE = Esaddle − Eminimum, the energy difference between the sad-
dle and a connected minima, and β = 1/kBT, where kB is the
Boltzmann factor and T is a fictitious temperature since thermal
deformations are not taken into account. Potential energy landscape
exploration consists of generating a number of events.

E. Systems studied
The fitting approaches are tested on two physical systems: (i)

a Si diamond structure with Stillinger–Weber as a reference poten-
tial;23 and (ii) a SiGe zincblende structure using the Stillinger–Weber
potential with parameters from Ref. 24. Both models count 215
atoms and a vacancy. These potentials are selected as they are com-
putationally light and facilitate the accumulation of statistics at the
level needed here; to obtain physically-relevant results, one should
train on density functional theory (DFT) and not on empirical
potentials.

The Si system is fitted with an ML potential set at level 16, with
92 moment tensor functions [B(R), Eq. (1)]. For SiGe, a potential at
this level (16) generates errors on the barrier of the order of 0.5 eV,
which indicates that a richer set of parameters is needed to describe
the chemical diversity, and a level 20 is chosen for this system, with
288 moment tensor functions. The relation between the number of
moment tensor functions for Si and energy error is presented in the
supplementary material, Fig. 1.

F. Fitting approaches
To evaluate the reliability of the various on-the-fly approaches

to reproduce the reference potential on configurations of interest for
complex materials, the training set is limited to structures visited
during MD or ARTn simulations within the conditions described
later. No additional information regarding alternative crystalline
structures, defects, surfaces, pressure, etc., is provided.

For each of these two systems, we compare the following
approaches:

1. ML-MD: The MTP potential is to train OTF on MD simula-
tions. The potential is then evaluated, without further update,
in the ARTn simulation.

2. OTF-MDART: Starting from the ML-MD generated potential,
the MTP is re-trained following the OTF procedure during
ARTn simulations.

3. OTF-ART: Training of the potential is performed uniquely
during ARTn runs with OTF.
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The ML-MD approach is in line with Ref. 22, where a potential
is trained OTF during MD. However, while the potential is trained
with MD, its accuracy is evaluated during an ARTn activated process
search.

1. ML-MD: Simulations details
Nine sets of MTP ML-MD potentials are developed and trained

independently during NVT MD simulations. Each set is trained at
one specific simulation temperature ranging from 300 to 2700 K
by steps of 300 K and starting from the same 215 atom crystalline
structure with a vacancy. Each set consists of ten independently
constructed MTP potentials for statistical purposes.

Training takes place on a series of sequences, each run for a
maximum of 100 ps with steps of 1 fs, with an average of 75 ps per
cycle. MTP potentials require about 34 ± 14 and 93 ± 43 learning
cycles for Si and SiGe to be converged; the MTP potential is consid-
ered to have learned the potential when no configuration generated
during a 100 ps second is found in the extrapolating zone of the
potential (with γ > γ0).

As long as this is not the case, the sequence is restarted from
the same initial structure with different initial velocities. To facilitate
convergence, ML-MD potentials are fitted over three sets of progres-
sively more restricted reliability extrapolation parameter γ0. More-
over, because MD leads to global deformation, the extrapolation is
computed using global descriptors (see Table I).

The final potential is then evaluated, in a fixed form, in ARTn
simulations.

2. OTF ARTn simulations details
Each ARTn simulation is launched for 1500 events, with 24 par-

allel independent searches, for a total of 36 000 generated events. For
ARTn, a sequence is either a search for a saddle point (successful or
failed) or a minimization from the saddle to the minimum.

At each point, 24 sequences are generated in parallel, and the
configuration selected for an update of the potential is based on
the combined set of configurations to generate one training set. The
sequence is restarted from the last accepted position or, in the case of
the vacancy in Si, the ground state. When an activation step gener-
ates a configuration with γ(R) > γmax, it is relaunched with the same
initial deformation. As with MD, ten independent ARTn runs are
launched for statistics.

In the bulk, diffusion of the vacancy in Si takes place through
a symmetric mechanism bringing the vacancy from one state to an
identical one, so all ARTn event searches are effectively started from
the same state. Starting from a zincblende structure, SiGe evolves
according to an accept-reject Metropolis with a fictitious temper-
ature of 0.5 eV.32 Since the configurations explored by ARTn are

TABLE I. Extrapolation and selection hyperparameter values used for the three on-
the-fly approaches used in this work.

Approach γ0 γmax Grade-mode

ML-MD 5.5/3.3/1.1 60/10/2.2 Global
OTF-MDART 1.1 2.2 Local
OTF-ART 1.1 2.2 Local

locally deformed, the extrapolation grade for ARTn generated con-
figurations used for the OTF-MDART and OTF-ART approaches is
evaluated with the local descriptors.

G. Analysis
Following the standard approach, the error is computed based

on the energy and force differences between the MLP and refer-
ence potentials computed on the same structures. Here, however,
this error is only measured on configurations generated during the
ARTn procedure.

For the energy,

ΔE = ∣EMLP(XMLP) − Eref (XMLP)∣, (10)

and, for the forces,

ΔF =
1
N

N

∑
i=0

√

∥f(i)MLP(XMLP) − f(i)ref (Xref )∥
2, (11)

where the positions XMLP are obtained from a simulation run with
the machine-learned potential, and the energy on this exact con-
figuration is computed with the reference and the machine-learned
potentials. The same is performed for the error on forces.

Since this work is focused on the correct description of first-
order transition states, we also compute the minimum and saddle
barrier positions and energy convergence errors (ΔXconv, ΔEconv) as

ΔXconv =

√

∑
N
i=0∥x

(i)
MLP − x(i)ref ∥

2, (12)

ΔEconv = ∣EMLP(XMLP) − Eref (Xref )∣, (13)

where XMLP and Xref are the positions corresponding to the min-
imum or saddle point as defined by the MLP and the reference
potentials, respectively, with EMLP(XMLP) and Eref (Xref ) the cor-
responding energies; by definition, forces are zero at these points
defined by the respective potentials.

While XMLP and EMLP(XMLP) are obtained on the ARTn tra-
jectories, Xref and Eref (Xref ) are obtained after reconverging the
minima or the saddle point using the reference potential starting
from XMLP and following the ARTn procedure.

From an energy barrier δE(X), the energy barrier error
ΔδEbarrier is given by

ΔδEbarrier = ∣δEMLP(XMLP) − δEref (Xref )∣. (14)

If no trend is observed between the different temperatures
where potentials are trained, we calculate their average and deviation
in order to effectively compare them with other approaches.

III. RESULTS
In this section, we first examine results for a vacancy in c-Si

to establish the methods, then consider the same approaches on the
more complex SiGe alloy.

A. ML-MD
The ML-MD approach serves as a benchmark to assess the

efficiency of the various approaches to sampling energy barriers
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FIG. 2. Number of calls to the reference potential for each of the machine-learned
potentials developed for Si as a function of the temperature referring to the one
used during MD training. Since the configurations are relaxed to zero K in ARTn
simulations, there is no associated temperature for this procedure. Vertical bars
represent the standard deviation computed on ten independent realizations.

and diffusion mechanisms. Here, ten independent ML potentials
are generated through on-the-fly MD simulations at nine different
target temperatures ranging from 300 to 2700 K by step of 300 K
and require between 253 ± 60, at 300 K, and 369 ± 85 evaluations
of the reference potential, at 2700 K, to complete learning cycles
(see Fig. 2).

For the purpose of this work, the quality of the ML-MD poten-
tial is evaluated on configurations generated with ARTn as local
activated events associated with a vacancy in a crystalline envi-
ronment are generated. To avoid non-physical results, when an
ARTn-generated configuration shows a γ > 200, the configuration
is rejected, the event search is stopped, and a new event search is
launched from the same initial minimum.

Figure 3 shows the standard validation error on energy and
forces calculated over all configurations generated along pathways
for the 36 000 successful events and the 10 080 failed saddle searches
(a success rate of 78%). The error on energy increases almost
exponentially with the sampling temperature, ranging from
0.44 ± 0.36 meV/atom at 300 K to 5.1 ± 1.7 meV/atom at 2700 K.
The error on forces is essentially constant at 0.0123 eV/Å, on
average, between 300 and 1800 K, and increases rapidly at high
temperatures, reaching 0.0256 eV/Å at 2700 K.

Since the focus of this work is on transition states, Fig. 4 dis-
plays the error on the energy barriers as a function of MD-fitting
temperature, computed with Eq. (12) and averaged over all gen-
erated barriers. This error is relatively uncorrelated with the MD
temperature simulation with an average of 0.056 ± 0.022 eV, a min-
imum error of 0.024 ± 0.01 eV at 2400 K, and a maximum of
0.08 ± 0.03 eV at 1200 K. This error is lower than that for a general
point on the energy landscape (Fig. 3) in part because it is computed
as a difference between the saddle and initial minimum.

Errors in the position of the saddle point, associated with the
capacity to reproduce correctly their geometry, are given in Fig. 5.
The top panel indicates the average distance between saddle points

FIG. 3. Average energy (top) and mean absolute forces (bottom) errors per atom
for Si measured over all configurations generated along pathways in ARTn for the
three approaches. Temperature refers to the one used during MD training. Vertical
bars represent the standard deviation computed on ten independent realizations.

converged with the reference and the ML potentials: it decreases
from 0.16 ± 0.05 Å at 300 K to a minimum of 0.09 ± 0.02 Å between
1500 and 2100 K, going up at the two highest temperatures (2400
and 2700 K).

Overall, this straightforward fitting approach based on
constant-temperature MD runs provides accurate diffusion barriers,
ranging from 0.51 to more than 4 eV, for a vacancy in crystalline
silicon at low computational costs (263 to 369 evaluations of the
reference potential).

B. Revisiting ML-MD potential in ARTn:
The OTF-MDART adjusting approach

To evaluate the possibility of improving ML-MD potentials for
activated events, potentials are on-the-fly re-trained during ARTn
learning cycles (OTF-MDART). Figure 2 gives the number of calls
to the reference potential for this procedure during the ARTn runs
(dashed orange line) as well as the total number of calls, including
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FIG. 4. Average energy barrier error for Si as defined by Eq. (14) for all events
generated in ARTn for the three approaches. Temperature refers to the one used
during MD training. Vertical bars represent the standard deviation computed on
ten independent realizations.

those made during ML-MD fitting (solid orange line). The num-
ber of calls during ARTn learning cycles ranges from 979 ± 153 at
300 K to 136 ± 38 at 2700 K for a total of 1232 ± 177 to 505 ± 109,
respectively, when including ML-MD calls.

The error in energy and forces remains correlated with the ML-
MD temperature; it is higher when the error is higher at the ML-MD
trained temperature. This correlation is particularly strong when
retraining MD potentials fitted between 1500 and 2700 K (Fig. 3,
solid orange line). The error on energy for OTF-MDART is almost
constant between 300 and 2400 K, at 0.22 meV/atom, rising to
1.9 meV/atom at 2700 K, lower by 50% to 63% than ML-MD. A
similar improvement is observed in the forces, which range from

FIG. 5. Mean position error on all saddle points for Si. Temperature refers to
the one used during MD training. Vertical bars represent the standard deviation
computed on ten independent realizations.

TABLE II. Average energy barrier error and mean position error on all saddle points
for Si. The average error for ML-MD and OTF-MDART training is taken over all
temperature sets. The standard deviation computed for all temperature sets.

Errors ML-MD OTF-MDART OTF-ART

ΔδEbarrier (eV) 0.056 ± 0.022 0.040 ± 0.012 0.039 ± 0.008
ΔXconv (Å) 0.114 ± 0.029 0.072 ± 0.010 0.072 ± 0.006

0.0103 eV/Å, on average, between 300 and 1800 K, increasing to
0.0173 eV/Å at 2700 K, representing a 16% to 32% decrease in error.

Between 300 and 1500 K, retrained potentials with OTF-
MDART show more constant energy barrier errors than pure ML-
MD models (Fig. 4), with an error of about 0.036 eV (OTF-MDART)
vs an average of 0.064 eV (ML-MD), a 44% improvement. At the
highest temperature, 1800 to 2700 K, however, as OTF-MDART
calls for less learning cycles, errors and fluctuations are not reduced
with respect to ML-MD. Interestingly, though, improvements in the
saddle position are observed at all temperatures for OTF-MDART
(Fig. 5) with an average error of 0.072 ± 0.010 Å.

Overall, by retraining ML-MD potential in ARTn, errors are
reduced and results are more consistent, i.e., error distributions are
narrower, irrespective of the temperature used in the initial MD
training. This additional retraining leads to a 50% to 96% decrease
in energy error (Fig. 3), a 29% improvement in average energy
barrier errors (Table II), and a 37% reduction in mean saddle posi-
tion errors, but with an additional number of calls to the reference
potential increasing between 37% and 490%.

These results can be understood by looking at the fraction of
MD-generated configurations that remain in the training set at the
end of the simulation (Fig. 6). At temperatures between 300 and
1200 K, none of the ML-MD configurations remain in the final
training set; this proportion goes from 1.3% to 38% between 1500
and 2700 K (left-hand axis, blue line). At these temperatures, the

FIG. 6. Fraction of original MD configurations (left scale) and total number of MD
configurations (right scale) remaining in the final training set (TS) for Si. Tempera-
ture refers to the one used during MD training. Vertical bars represent the standard
deviation computed on ten independent realizations.
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system melts and generates a wider range of configurations. Since
these configurations are far from ARTn-generated configurations,
the selection algorithm keeps them in the set even though they do
not help reduce errors for the configurational space of interest with
ARTn.

C. The OTF-ART adjusting approach
Given the results for OTF-MDART, we now turn to an OTF

approach entirely integrated into ARTn in an attempt to increase
accuracy and reduce the cost and waste of evaluations of the
reference potential.

Ten independent on-the-fly ML potentials are generated
entirely in ARTn for a total of 36 000 events starting from the same
initial minimum. Each potential is trained initially from the same
configuration (the initial minimum) in the training set. Each par-
allel event search goes through a learning cycle if needed, and as
the simulation progresses, the learning cycles become rarer. The val-
ues are averaged over the ten simulations and as they go through
learning.

With an average total of 628 ± 283 reference potential evalu-
ations, the cost of the OTF-ART is between that of the ML-MD
and the OTF-MDART. Along pathways, the average energy error
for these potentials is 0.22 ± 0.03 meV/atom, on par with the OTF-
MDART potential based on low-temperature ML-MD fitting and
49% lower than the 300 K ML-MD potential. Errors on forces, at
0.011 ± 0.001 eV/Å, are in between ML-MD (0.012 eV/Å) and OTF-
MDART (0.010 eV/Å) at low training temperatures. Comparing
with the 2700 K potential fitting in MD, the OFT-ART error is 57%
lower than ML-MD (0.026 eV/Å) and 36% lower than OTF-MDART
(0.017 eV/Å).

Focusing on barrier energy, the average error is 0.039
± 0.008 eV (see Fig. 4), about 2.5% lower than OTF-MDART
and 30.3% better than ML-MD. The error of 0.072 ± 0.006 Å on
the converged saddle position is similar to the 0.072 ± 0.010 Å
obtained with OTF-MDART and 37% lower than with ML-MD
(0.114 Å).

D. Reproducing the dominant diffusion mechanism
The exploration of the energy landscape around the vacancy

leads to the generation of a wide range of activated mechanisms
and associated barriers (both forward, associated with the diffusion
of the vacancy, and backward, from the final minima back to the
saddle point). Figure 7 presents the complete distribution of gen-
erated direct and inverse barriers connected to the ground state.
The peak near 0 eV (around 10−2 to 10−1 eV) is associated with
the inverse barrier to the direct saddle at 2.38, 2.70 eV, and higher
(up to 5.5 eV), except for the inverse 0.45 eV barrier, which is linked
to the 2.87 eV direct barrier. Direct barriers at 0.51 eV represent
symmetric first neighbor vacancy diffusion, while barriers at 2.38
and 2.70 eV are associated with more complex vacancy diffusion
mechanisms.33 Events with barriers at 2.38 and 2.70 eV, for exam-
ple, involve vacancy diffusion through complex bond-exchanges.
Spectator events34 where the diamond network around the vacancy
is transformed by bond switching are also generated. This mech-
anism was proposed by Wooten, Winer, and Weaire (WWW) to
describe the amorphization of silicon.35 The main spectator event

FIG. 7. ARTn-generated energy barrier distributions for vacancy-diffusion events
in Si, including direct barriers (from the ground state) and inverse barriers (from
excited states), as generated with the MTP model (orange) and re-converged
using the reference model (blue) from saddles and minima positions originally
found with the MTP model.

occurs as two neighbors of the vacancy are pushed together, allow-
ing the creation of a bond associated with the 2.87 eV barrier. Other
mechanisms involve strong lattice distortion and bond formation
not involving direct neighbors of the vacancy with very high energy
barriers33 of between 3.2 and 4.0 eV.

Since vacancy diffusion for this system is dominated by a
0.51 eV single barrier mechanism, with the next barrier at 2.35 eV,
an accurate description of the dominant mechanism is essential to
correctly capture defect kinetics in Si. Table III presents the error
on this barrier for the three approaches described earlier. With an
error of 0.019 ± 0.005 eV and a relative error of 3.7%, OTF-ART
offers the closest reproduction of the reference barrier, followed by
OTF-MDART and ML-MD, with respective errors of 0.022 ± 0.011
(relative error of 4.3%) and 0.026 ± 0.015 (5.1%). Overall, the error
on the energy barrier is lower than that on the total energy presented
earlier (0.046 ± 0.006 eV for OTF-ART, for example) due to a par-
tial error cancellation associated with the energy difference taken to
measure the barrier.

The validity of the barrier is also measured by the precision
of the saddle geometry. For the 0.51 eV barrier, ML-MD converges
with an error on the position of 0.088 ± 0.036 Å, with OTF-MDART
and OTF-ART giving errors almost 50% lower, at 0.040 ± 0.017 and
0.047 ± 0.018 Å, respectively.

TABLE III. Average energy barrier errors and mean saddle position errors on the
0.51 eV vacancy diffusion for Si. The average error for ML-MD and OTF-MDART
training is taken over all temperature sets. The standard deviation computed for all
temperature sets.

Errors ML-MD OTF-MDART OTF-ART

ΔδEbarrier (eV) 0.026 ± 0.015 0.022 ± 0.011 0.019 ± 0.005
ΔXconv (Å) 0.088 ± 0.036 0.040 ± 0.017 0.047 ± 0.018
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FIG. 8. SiGe barrier histogram, including direct barriers (from states accepted)
and inverse barriers (from excited states), as found on-the-fly by the MTP model
(orange) and re-converged by the reference model (blue) from saddles and minima
positions originally given by MTP.

E. SiGe system
Having shown an interest in developing a specific potential by

applying on-the-fly learning directly to activated events on a sim-
ple system such as c-Si with a vacancy, we tested this approach with
a more complex alloy with the same overall reference potential to
facilitate comparison. Starting from an ordered zincblende structure,
the diffusion of a vacancy creates a chemical disorder that complexi-
fies the landscape visited, as shown by the continuous distribution of
activated barriers, including both direct and inverse barriers, found
as the vacancy diffuses (Fig. 8). We note that the lowest barrier for
a vacancy diffusing is around 0.6 eV, with lower barriers associated,
as for Si, with reverse jumps from metastable states. The energy bar-
rier distribution for vacancy diffusing in SiGe (Fig. 8) is much more
complex than for Si due to the chemical disorder that builds as the
vacancy diffuses.

As stated in the methodology, the additional complexity of the
system imposes a richer machine-learning potential with a larger
set of parameters to encompass the greater diversity in the compo-
nents and the configurations due to chemical disorder. Combined,
these two levels of complexity (set of parameters and configura-
tional) result in an overall higher number of calls to the reference
potential as compared to Si, irrespective of the approach used [see
Fig. 9 (SiGe) vs Fig. 2 (Si)]: while ML-MD requires between 380
evaluations of the reference potential at 300 K and 1549 at 2700 K,
OTF-MDART needs a total of around 3465 calculations of the refer-
ence potential, irrespective of the temperature, as original ML-MD
configurations are progressively removed from the training set. This
effort results in a number of calls to the reference potential for OTF-
MDART that are 4% higher than with OTF-ART (3329 on average).
To reduce computational costs, we omit the 1500 K run, as statistical
behavior is smooth in this temperature region.

To disentangle the two contributions, we compare the cost of
fitting a Si potential with the same level 20 potential as used for SiGe.
Following the full OTF-ART procedure, creating a Si MLP requires
2926 calls to the reference potential. The intrinsic complexity of the
landscape contributes, therefore, to about a 14% increase in the Si

FIG. 9. Number of calls to the reference potential for each of the OTF machine-
learned potentials developed for SiGe as a function of the temperature referring to
the one used during MD training. Since the configurations are relaxed to zero K in
ARTn simulations, there is no associated temperature for this procedure. Vertical
bars represent the standard deviation computed on ten independent realizations.

TABLE IV. Average energy barrier errors and mean saddle position errors on all bar-
riers for SiGe. The average error for ML-MD and OTF-MDART training is taken over
all temperature sets. The standard deviation computed for all temperature sets.

Errors ML-MD OTF-MDART OTF-ART

ΔδEbarrier (eV) 0.082 ± 0.024 0.072 ± 0.014 0.066 ± 0.015
ΔXconv (Å) 0.091 ± 0.020 0.076 ± 0.013 0.070 ± 0.014

baseline call count. In terms of accuracy, the Si MLP level 20 leads to
an average error on the energy of 0.1 meV/atom, about 50% lower
than with the level 16 potential described earlier (0.22 meV/atom).
For SiGe, this error is (0.42 meV/atom), two times higher than for Si
MLP level 16 and four times that of Si MLP level 20.

This can be understood by the number of different config-
urations visited: as opposed to the Si system, where each initial
minimum is identical (as the vacancy moves in an otherwise per-
fect elemental crystal), the binary system is transformed as the
vacancy diffuses and the chemical order is slowly destroyed: each of
the 24 ARTn parallel trajectories used to define the potential over
1500 events evolves independently according to a probability given
by the Metropolis algorithm with a fictitious temperature (since the
network itself is structurally at 0 K) of 0.5 eV [Eq. (9)], providing a
rich range of local environments.

Fitting a potential is clearly harder: with the parameters
used—when a configuration graded at γ > 200 is encountered, the
ARTn event search is stopped—no event could be generated using
the ML-MD potential at 300 and 600 K, which explains the absence
of data for these temperatures in Fig. 10 and Table IV. For SiGe,
the error on energy (see Fig. 10) with the ML-MD at 900 K and the
above-mentioned ranges from 0.5 to 1.4 meV/atom as a function
of temperature. On average, these errors are between 14% and 69%
lower with OTF-MDART or OTF-ART at around 0.43 meV/atom.
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FIG. 10. Average energy (top) and mean absolute forces (bottom) errors for SiGe
measured over all configurations generated along pathways in ARTn for the three
approaches. Temperature refers to the one used during MD training. Vertical bars
represent the standard deviation computed on ten independent realizations.

The OTF-ART approach gives an error in energy barrier
of 0.066 ± 0.015 eV, which represents a 19.5% and 8.3% lower
error than the ML-MD (0.082 ± 0.024 eV) and OTF-MDART
(0.072 ± 0.014 eV), respectively (Table IV). The errors on the con-
verged saddle position for OTF-ART and OTF-MDART are similar
at 0.070 ± 0.014 and 0.076 ± 0.013 Å, respectively, and represent a
23% lower error than with ML-MD (0.092 Å). This accuracy is sim-
ilar to that obtained with Si, in contrast to total energy and energy
barrier errors.

We note that the advantage of ML-MD for SiGe is overstated, as
shown by the proportion of events generated with ML-MD potential
that are interrupted due to a too large extrapolation grade, γ > 200
for both SiGe and Si (Fig. 11): for SiGe, between 85% and 30%
of events are aborted between 300 and 1200 K, respectively. This
proportion falls to zero percent failure at 1800 K.

FIG. 11. Percentage of search interruptions during ML-MD potential evaluation
in ARTn (γ > 200) for Si and SiGe as a function of ML-MD training tempera-
ture. Vertical bars represent the standard deviation computed on ten independent
realizations.

IV. DISCUSSION
We compare three approaches aimed at the construction of

potentials with machine learning on-the-fly for the exploration of
activated mechanisms in the potential energy landscape. We eval-
uate these by computing their efficiency at reproducing the energy
landscape around a vacancy in two systems: a relatively simple Si dia-
mond system (Fig. 7) and a more complex SiGe zincblende system
that disorders under vacancy diffusion (Fig. 8), both described with
a reference empirical potential to allow for better statistical analysis.

The first approach, which sets the comparison level, constructs
a more general machine learning potential with molecular dynam-
ics (ML-MD); the second on-the-fly adjusts this generated potential
during the search for activated events using ARTn; and the third
approach constructs a specifically on-the-fly trained potential during
the search for activated events (OTF-ART). The efficiency of these
three procedures is measured by the quality of the reproduction of
the reference potential during the search for activated events.

The baseline, defined by the ML-MD, is competitive with previ-
ously published work. Energy errors for the more standard ML MD
approach with a level 16 potential range from 0.44 ± 0.36 meV/atom
at 300 K to 5.1 ± 1.7 meV/atom at 2700 K (Fig. 3), an order of mag-
nitude lower or similar to the 4 meV/atom on an MTP potential of
level 24 for Si obtained by Zuo et al.,25 with the difference explained
by the fact that activated events involve local deformations from a
zero-temperature crystal with a vacancy and that DFT potentials
are more difficult to fit than empirical ones.21 That is, using DFT,
we would expect that these conclusions hold as we are looking at
the differences between our three approaches, not claiming specific
accuracy of these.

Similarly, the relative energy error on the dominant 0.51 eV
diffusion barrier for SW Si is 5.1% (0.026 eV) with the ML-MD
approach and 3.7% (0.019 eV) with the OTF-ART. Using the same
MTP potential trained using an OTF MD with an ab initio reference
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potential, Novoselov et al. find a 0.20 eV barrier for vacancy diffu-
sion in Si as compared with 0.18 eV with the reference potential, an
error of 0.02 eV or a 10.0% relative error.

Overall, the ML-MD approach, especially when run at temper-
atures between 900 and 1800 K, can generate a generic ML potential
with reasonable precision for describing activated mechanisms in
Si and SiGe. Developing a more specific OTF potential, generated
directly with ARTn on activated trajectories, however, offers a more
accurate description of both the energy and geometry at the barriers.

It is possible to recover this precision by adjusting the original
MD potential during ARTn runs; however, this increases the num-
ber of calls to the reference potential, raising the total costs beyond
that of OTF-ART while largely erasing work made during the ML-
MD training phase: for Si, between 300 and 1200 K, none of the
ML-MD configurations are retained, while around 1.3% to 12.5%
are retained for the potential trained in the range of 1500 and 2700 K
(Fig. 6, right-hand axis, orange line), but at the cost of lowering the
precision on barriers.

Moving to a more complex system, such as an evolving binary
alloy, increases the overall cost of the procedure in terms of calls to
the reference potential as more parameters need to be fit. Here also,
the gain from using a specific potential constructed from ARTn tra-
jectories is notable, both in the average errors and their fluctuations.
Indeed, the ML-MD potential presents considerable instabilities
while generating activated trajectories, as can be seen by the num-
ber of configurations considered outside of the potential’s scope
(γ > 200), see Fig. 11. This can also be seen by comparing the num-
ber of evaluations of the reference potential as a function of the
temperature for OTF-MDART; for Si, this number decreases while,
for SiGe, the total number of evaluations of the reference potential
remains constant. This means that the potential requires significant
re-adjustment, even from its high-temperature training, to adapt to
the created disorder of the evolving SiGe system.

V. CONCLUSION
We compare the advantages of using a more general vs spe-

cific machine-learned potential (MLP) to describe activated mech-
anisms in solids. To do so, we first generate an MLP constructed
with the Moment Tensor Potential formalism10,21 to replicate
Stillinger–Weber potential for Si and SiGe crystals with a single
vacancy using a standard molecular dynamics procedure (MD–ML).

Comparing the quality of the reproduction of activated mech-
anisms with an ML potential further refined during an activation-
relaxation technique nouveau sampling of the energy landscape and
a unique potential constructed on-the-fly within ARTn, we show
that while a general potential can deliver high accuracy for both the
barrier geometries and their related energies, error and fluctuations
around the average value are significantly lowered by constructing a
specific potential, with a number of calls to the reference potential
that is lower than a combined approach (MD + ARTn) for a similar
precision.

The advantage of using a specific potential remains when look-
ing at more complex materials, such as the SiGe alloys considered
here, even though the advantage in terms of calls to the reference
is strongly reduced. The next steps will involve applying this strat-
egy with DFT as a reference potential to attack problems that have

long been out of reach of computational materials sciences, allowing
a much closer connection between modeling and experience.

SUPPLEMENTARY MATERIAL

See the supplementary material for a figure of the relation
between accuracy and the level of the MTP potential for Si. In addi-
tion, there are figures displaying the accuracy of the saddle position
for the 0.51 eV barrier in Si and all barriers in SiGe.

ACKNOWLEDGMENTS
This project is supported through a Discovery Grant from

the Natural Science and Engineering Research Council of Canada
(NSERC). Karl-Étienne Bolduc is grateful to NSERC and IVADO
for summer scholarships. We are grateful to Calcul Québec and
Compute Canada for their generous allocation of computational
resources.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Eugène Sanscartier: Conceptualization (equal); Data curation
(equal); Formal analysis (equal); Investigation (equal); Methodology
(equal); Software (equal); Validation (equal); Visualization (equal);
Writing – original draft (equal); Writing – review & editing (equal).
Félix Saint-Denis: Conceptualization (supporting); Data curation
(supporting); Investigation (supporting); Methodology (support-
ing). Karl-Étienne Bolduc: Conceptualization (supporting); Data
curation (supporting); Investigation (supporting); Methodology
(supporting). Normand Mousseau: Conceptualization (equal); For-
mal analysis (equal); Funding acquisition (equal); Methodology
(equal); Project administration (equal); Resources (equal); Software
(equal); Supervision (equal); Validation (equal); Writing – original
draft (equal); Writing – review & editing (equal).

DATA AVAILABILITY
The ARTn packages as well as the data reported here

are distributed freely. Please contact Normand Mousseau
(normand.mousseau@umontreal.ca).

REFERENCES
1W. Kohn and L. J. Sham, “Self-consistent equations including exchange and
correlation effects,” Phys. Rev. 140, A1133–A1138 (1965).
2E. R. Lindahl, “Molecular dynamics simulations,” in Molecular Modeling of
Proteins (Springer, 2008), pp. 3–23.
3A. F. Voter and J. D. Doll, “Transition state theory description of surface
self-diffusion: Comparison with classical trajectory results,” J. Chem. Phys. 80,
5832–5838 (1984).
4A. F. Voter, “Introduction to the kinetic Monte Carlo method,” in Radiation
Effects in Solids (Springer, 2007), pp. 1–23.

J. Chem. Phys. 158, 244110 (2023); doi: 10.1063/5.0143211 158, 244110-11

Published under an exclusive license by AIP Publishing

 05 July 2023 11:59:40

https://scitation.org/journal/jcp
mailto:normand.mousseau@umontreal.ca
https://doi.org/10.1103/physrev.140.a1133
https://doi.org/10.1063/1.446610


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

5G. Henkelman and H. Jónsson, “Long time scale kinetic Monte Carlo simulations
without lattice approximation and predefined event table,” J. Chem. Phys. 115,
9657–9666 (2001).
6F. El-Mellouhi, N. Mousseau, and L. J. Lewis, “Kinetic activation–relaxation tech-
nique: An off-lattice self-learning kinetic Monte Carlo algorithm,” Phys. Rev. B 78,
153202 (2008).
7J. Behler and M. Parrinello, “Generalized neural-network representation of high-
dimensional potential-energy surfaces,” Phys. Rev. Lett. 98, 146401 (2007).
8A. P. Bartók, R. Kondor, and G. Csányi, “On representing chemical
environments,” Phys. Rev. B 87, 184115 (2013).
9A. P. Thompson, L. P. Swiler, C. R. Trott, S. M. Foiles, and G. J. Tucker, “Spectral
neighbor analysis method for automated generation of quantum-accurate inter-
atomic potentials,” J. Comput. Phys. 285, 316–330 (2015).
10A. V. Shapeev, “Moment tensor potentials: A class of systematically improvable
interatomic potentials,” Multiscale Model. Simul. 14, 1153–1173 (2016).
11G. Sivaraman, J. Guo, L. Ward, N. Hoyt, M. Williamson, I. Foster, C. Ben-
more, and N. Jackson, “Automated development of molten salt machine learning
potentials: Application to LiCl,” J. Phys. Chem. Lett. 12, 4278–4285 (2021).
12P.-L. Kang, C. Shang, and Z.-P. Liu, “Large-scale atomic simulation via machine
learning potentials constructed by global potential energy surface exploration,”
Acc. Chem. Res. 53, 2119–2129 (2020).
13G. Sivaraman, A. N. Krishnamoorthy, M. Baur, C. Holm, M. Stan, G. Csányi, C.
Benmore, and Á. Vázquez-Mayagoitia, “Machine-learned interatomic potentials
by active learning: Amorphous and liquid hafnium dioxide,” npj Comput. Mater.
6, 104 (2020).
14L. K. Béland, Y. Anahory, D. Smeets, M. Guihard, P. Brommer, J.-F. Joly,
J.-C. Pothier, L. J. Lewis, N. Mousseau, and F. Schiettekatte, “Replenish and relax:
Explaining logarithmic annealing in ion-implanted c-Si,” Phys. Rev. Lett. 111,
105502 (2013).
15Y. N. Osetsky, L. K. Béland, A. V. Barashev, and Y. Zhang, “On the existence and
origin of sluggish diffusion in chemically disordered concentrated alloys,” Curr.
Opin. Solid State Mater. Sci. 22, 65–74 (2018).
16O. A. Restrepo, N. Mousseau, M. Trochet, F. El-Mellouhi, O. Bouhali, and C. S.
Becquart, “Carbon diffusion paths and segregation at high-angle tilt grain bound-
aries in α-Fe studied by using a kinetic activation–relation technique,” Phys. Rev.
B 97, 054309 (2018).
17G. T. Barkema and N. Mousseau, “Event-based relaxation of continuous
disordered systems,” Phys. Rev. Lett. 77, 4358–4361 (1996).
18R. Malek and N. Mousseau, “Dynamics of Lennard-Jones clusters: A charac-
terization of the activation–relaxation technique,” Phys. Rev. E 62, 7723–7728
(2000).
19A. Jay, M. Gunde, N. Salles, M. Poberžnik, L. Martin-Samos, N. Richard,
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