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Structural evolution of vacancy clusters in α-iron: A kinetic activation-relaxation technique study
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The kinetics of vacancies in materials plays a significant role in determining their physical properties. In this
work, we investigate diffusion of vacancies in α-iron using the kinetic activation-relaxation technique, an off-
lattice kinetic Monte Carlo method with on-the-fly catalog building based on the activation-relaxation technique
nouveau coupled with an embedded atom method potential. We focus on the evolution of one to eight vacancies
to provide a detailed picture of the energy landscape, overall kinetics, and diffusion mechanisms associated
with these defects. We show formation energies, activation barriers for the ground state of all eight systems,
and migration barriers for the diffuse systems. This study points to an unsuspected dynamic richness, even for
this simple system, that can only be discovered through comprehensive and systematic approaches such as the
kinetic activation-relaxation technique. The complex energetic environment controlling the kinetics of small
vacancy clusters, we find here, demonstrates that simple rules are not sufficient to develop a robust approach to
predictive control and prevention of damage processes associated with vacancy clusters in structural metals.
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I. INTRODUCTION

Vacancies, isolated and in clusters, are key defect struc-
tures for determining a material’s physical and mechanical
properties. Vacancies are created inside materials under de-
formation [1,2], irradiation [3–5], or after quenching [6,7].
Once formed, they can further aggregate and form nanoscale
defects, such as stacking faults, cracks, voids, gas bubbles,
dislocation loops, etc. [8–11]. The subsequent evolution of
these defect structures strongly affects the material’s proper-
ties, producing effects such as embrittlement, strengthening,
crack resistance, ductility, or creep behaviors [12–15], which
can lead to property degradation and possibly component
failure. Thus, understanding the formation and evolution of
vacancy clusters is an interesting topic for materials used in
extreme environments.

Despite decades of extensive research, understanding
the formation and evolution of vacancy clusters remains a
formidable challenge. The atomic-scale details of vacancy
cluster diffusion are generally difficult to observe experimen-
tally. Thus, atomistic simulations are needed to understand
the interaction and migration of vacancy clusters at this scale.
For this, however, we need a proper description, using either
ab initio approaches or accurate empirical potentials, as well
as comprehensive sampling methods. Ab initio calculations
based on density functional theory (DFT) [16] provide an
accurate approach to investigating atomic details and there-
fore have been used in numerous studies on vacancy clusters
[17–23]. However, due to their costs, these methods offer
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a limited capacity to sample energy landscape and most
work limit themselves to finding a transition state between
given initial and final states based on an initial guess for
the connecting trajectory. Only the pathway closest to the
initial guess is explored, leaving other possible pathways
unexplored. This can be problematic with complex energy
landscapes, where multiple nontrivial but relevant pathways
may be present. Moreover, DFT methods are too expensive
to apply to large systems or to allow extensive sampling.
While standard simulation tools such as molecular dynamics
[24] coupled with empirical potentials could provide useful
information on atomistic details of these diffusion mecha-
nisms, they often cannot reach the extended timescale over
which many of these processes occur. Kinetic Monte Carlo
approaches [25,26] provide a solution to reaching longtime
dynamics; however, the standard implementation requires an
upfront knowledge of the relevant barriers and cannot con-
sider crucial elastic deformations. While results from such
simulations are enlightening, their quantitative validity is lim-
ited since the full details of local atomic configurations can
significantly affect diffusion kinetics. This is why we need
a method such as the kinetic activation-relaxation technique
(k-ART) [27,28], a unique off-lattice kinetic Monte Carlo
algorithm with on-the-fly catalog-building capabilities, which
lifts those limitations and allows us to map these processes in
detail. The k-ART ensures an efficient and extensive sampling
of energy landscapes as it incorporates exact elastic effects at
both minima and saddle points for a precise kinetic description
of complex materials ranging from defects in metals to the
long-time evolution of amorphous materials [29–32].

In this study, we focus on vacancy cluster diffusion
in α-Fe, a central component of the ferritic steels widely
used in aeronautic and nuclear industries. This system has
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received considerable attention over the years [18,19,33–46],
with main efforts going towards elucidating the structure of
the vacancy clusters formed during deformation or irradiation.
It is well known, for example, that the most common vacancy
clusters in α-Fe are cavities [34,35]. However, their formation
mechanism and kinetic evolution are less well understood.
An extensive characterization of vacancy cluster formation
and possible diffusion pathways is still missing. Such a work
would provide a complete picture of the various diffusion
mechanisms and evaluate the possible richness of the energy
landscape associated with this phenomenon.

For this purpose, we employ k-ART, coupled with a reli-
able and well-tested embedded atom method (EAM) potential,
to achieve this goal. Using this approach, we characterize the
associated energy landscape and clustering mechanisms of
vacancy clusters. We focus, more specifically, on the diffusion
and clustering of one to eight vacancies in crystalline α-iron.
We show that even these simple assemblies, from one to eight
vacancies, can present complex reorganizations that consider-
ably affect their diffusion properties. The paper is organized
as follows: The methodology, including a brief overview of
k-ART, the model employed, and the computational details,
are presented in Sec. II. Then, simulation results are presented
and discussed in Secs. III and IV, respectively. Finally, the
conclusion is given in Sec. V.

II. METHODOLOGY

A. Kinetic-activation relaxation technique (k-ART)

The k-ART is a kinetic Monte Carlo (KMC) algorithm with
on-the-fly event catalog-building capacity and exact elasticity
treatment. While details of k-ART implementation can be
found elsewhere [27,28,47], here we provide a brief overview
of the basic algorithm and the specific parameters used in this
study.

At the beginning of each KMC step, the local environment
surrounding each atom is characterized by its local topology.
The k-ART generates a local connectivity graph involving
each atom and its surroundings. Here, we use a cutoff of
2.7 Å for drawing a link between two atoms and a radius of
6.0 Å around the central atom for the maximum graph size.
Graphs are then analyzed using the NAUTY [48] package, a
topological analysis package that it used to provide a unique
identifier associated with the graph’s automorphic group and
the permutations allowing to restore of the reference graph. If
the topology is known, events related to it are recovered from
the catalog and placed in a KMC tree; otherwise, the cata-
log is updated by launching a series of activation-relaxation
technique nouveau (ART nouveau or ARTn) [49–51] searches
to identify the diffusion mechanisms associated with this
topology. Once the catalog is fully updated and the tree is
completed for the current atomistic configuration, generic
events are ordered according to their rate, defined as

�i = ν0e− Eb
kBT , (1)

where ν0 is a fixed prefactor which is fixed at 1013 Hz and Eb,
the activation energy for the event i defined as the energy dif-
ference between the transition state and the initial minimum
[52–54]. Once the event tree is completed, the lowest-energy

barrier events that make up to 99.99% of the rate are fully
reconstructed and reconverged into specific events. In this
manner, low barriers are fully relaxed according to actual
geometry and, therefore, exactly include short- and long-range
elastic effects. Then the specific rates and overall KMC time
step are estimated again with the refine barriers. Finally, the
event is selected according to the standard KMC algorithm
[26]. The elapsed time t is computed according to a Poisson
distribution as

t = − ln μ∑
i �i

, (2)

where μ is a random number uniformly distributed between 0
and 1. To avoid being trapped by low barrier events associated
with nondiffusive mechanisms, we use the basin accelerated
mean-rate method (bacMRM) [47,55], which solves them
analytically. To fully characterize the kinetics on all relevant
timescales, we start all simulations with a basin threshold of
0.1 eV and increase it as flickering occurs.

B. Force fields

Interactions are calculated using the large-scale
atomic/molecular massively parallel simulator (LAMMPS)
[56,57] by linking its library to k-ART. To speed up the
computation, we use parallelization to generate events
on multiple processors. In this study, we use the EAM
potential developed by Ackland and Mendelev [58] for Fe-Fe
interactions. This potential provides an excellent agreement
with DFT calculations in bulk Fe.

C. Simulation details

We characterize the diffusion pathways of vacancy clus-
ters in a perfect cubic bcc bulk crystal containing 2000 Fe
atoms with periodic boundary conditions. The supercell is
oriented in the cubic directions, i.e., x in [100], y in [010],
and z in [001]. For each system containing one to five and
eight vacancies, we perform runs at 600 K, as defined in
the calculation of the rate. The variation in the total energy
of the system containing the largest cluster as a function of
the box size was checked to ensure the size was sufficiently
large. In all cases, the simulation box is a cubic box with
a length of 28.553 Å, corresponding to a lattice parameter
of 2.8553 Å in agreement with the literature for the bcc Fe
structure. The system’s energy is first minimized at T = 0 K
using LAMMPS before k-ART simulations are launched.

The ground-state (GS) energy is defined for each simu-
lation as the lowest-energy minimum identified during the
run, EGS. The activation energy for an event is defined as
the energy difference between the initial minimum Emin and
the adjacent saddle Esad (i.e., the barrier crossed between two
adjacent minima) or

Eb = Esad − Emin. (3)

The migration energy is defined as the difference between
the energy of the highest saddle point crossed along a path
connecting one local minimum to another and Emin.
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The square displacement (SD) is computed as usual:

SD =
N∑
i

[ri(tn) − ri(0)]2, (4)

where N is the number of vacancies and ri(tn), the position of
vacancy i at KMC step n.

To describe the energy cost for the formation of a vacancy
cluster with respect to the perfect lattice, the formation energy
per vacancy for the n-vacancy cluster is defined as

E f
nv = EF

nv

n
= 1

n

(
E tot

N−n − N − n

N
E tot

N

)
, (5)

where EF
nv is the formation energy for an n-vacancy cluster,

E tot
N-n is the total energy of the supercell with (N-n) atoms and

an n-vacancy cluster, and E tot
N = −8025.965 eV is the total

energy of the corresponding defect-free supercell containing
N atoms (2000 atoms in our case).

To compare the thermodynamic stability of a vacancy clus-
ter, the binding energy per vacancy for the n-vacancy cluster
is given by

Eb
nv = 1

n

(∑
n

E f
1v − EF

nv

)
= E f

1v − E f
nv, (6)

where E f
1v = 1.722 eV is the formation energy of an isolated

vacancy. Positive binding energy indicates a preference for the
n-isolated vacancies to form an n-vacancy cluster, and higher
binding energy denotes greater stability.

D. Elastic dipole tensors and relaxation volumes

The elements of the dipole tensor associated with a defect
can be calculated according to the equation [59,60]

Pi j = −Vcellσi j, (7)

where Vcell is the volume of the simulation cell and σi j is the
difference between the average macroscopic stress in the cell
containing the defect and in the pristine structure.

From the Pi j tensor associated with one of the local minima
or saddle points, the relaxation volume of bound vacancy
clusters in bcc iron can be easily determined in the context
of the elastic model by the following equation:

V rel
[min|saddle] = Tr(Pi j )

C11 + 2C12
. (8)

In this study, the elastic constants of the bcc iron matrix
corresponding to the Fe-Fe potential, C11 = 243, C12 = 145,
and C44 = 116 GPa, are in good agreement with the values
of the experimental and DFT results [61,62]. The migration
volume is defined as the difference between the relaxation
volume of the highest saddle point crossed along a path
connecting one local minimum to another and the initial
minimum.

E. Vacancy structure notation

The complex vacancy configurations are described in terms
of the vacancy-pair separation distances. The number of va-
cancy pairs in a m-vacancy structure is P(m) = m!/[2!(m −
2)!]. For example, the bound structure of the trivacancy

complex has P(3) = 3!/(2! × 1!) = 3 vacancy pairs. Using
di to represent the separation distance between two va-
cancies that are ith neighbors, the bound structure of the
m-vacancy complex can be described by these distances:
mV (Nd1 , Nd2 , Nd3 , Nd4 , Nd5 , Nd6 ), where Ndi is the total num-
ber of ith nearest-neighbor (NN) distances between pairs of
vacancies in the structure. For instance, 3V (2, 1, 0, 0, 0, 0)
illustrates the bound cluster configuration with two 1NN and
one 2NN vacancy-pair separation distances.

As discussed below, the binding energy for divacancies in
the fifth and sixth neighboring configurations is below room
temperature (at −0.021 and −0.011 eV, respectively). The in-
clusion of positions in the fifth and sixth neighbors is therefore
sufficient to describe the aggregation kinetics.

F. Calculation of lifetimes

To study the vacancy cluster lifetime and diffusivity, we
construct a complete transition matrix that allows recovering
the associated rate of all the possible states where the system
can move from the ground state until the system reaches a
state where one of the vacancies in it moved further away than
the fourth-nearest-neighbour (4NN) distance from any of the
remaining cluster vacancies.

The diffusion coefficient and thermal lifetime are calcu-
lated using the Markov chain solution described as follows:

(1) choose the ground state for a vacancy cluster of that
size as initial state i;

(2) generate a uniform random number u ε (0,1];
(3) select the next event j probabilistically such that∑ j−1
k pik < u � ∑ j

k pik , where pik is the probability to jump
from state i to state k;

(4) update the current state j → i;
(5) generate a second uniform random number μ ε (0,1];
(6) update times as τ = τ − ln μ∑

k �k
, where �k is the transi-

tion rate from state i to state k;
(7) return to step 2.
The lifetime of the cluster is defined as the time at which

one of the vacancies in it moves further away than the 4NN
distance from any of the remaining cluster vacancies. Cluster
mobility is studied by tracing the diffusion of the cluster.
The same simulation is repeated Nsim = 5 million times in
order to obtain sufficient statistics. The diffusion coefficient
is calculated as

D = 1

Nsim

Nsim∑
i

R2
i

6τi
, (9)

where R2
i is the squared displacement during the lifetime τi,

of the cluster, in simulation i.

III. RESULT

A. Validation

As a validation test, we analyze the diffusion of a single
Fe vacancy. The formation energy of monovacancy calculated
using EAM potential is 1.722 eV, consistent with previ-
ous simulations and experimental results (see Table. I). The
vacancy self-diffusion takes place through a first-nearest-
neighbor (1NN) jump with 100% probability. This 1NN jump
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TABLE I. Formation energy (EF
nv) of the ground state (GS) and migration energy (Em) of the dominant diffusion mechanisms from one

to eight vacancies. A comparison between the values obtained in this work (T.W.) and other works (O.W.), which are either experimental or,
more often, ab initio, is also presented.

EF
nv (eV) Em (eV)

Cluster T.W O.W. T.W. O.W

1V 1.722 1.81 [63], 1.95 [64] 0.640 0.640 [19], 0.670 [64]
2V2NN-4NN 3.204 3.214 [65], 3.610 [64] 0.641 0.680 [17]
2V2NN-1NN 0.716 0.76 [17]
3V 4.625 0.653 0.66 [46],0.64[18],0.36 [19]
4V 5.763 0.703 0.72 [33]
5V 6.873 0.638
8V 9.640 1.093

occurs either through a direct transition, from the ground
state GS (at EGS = −8020.231 eV with relaxation volume
−2.530 Å3) to a new GS by crossing an energy barrier of
0.64 eV (migration volume −1.625 Å3), or in two steps, from
the GS to a metastable state at Emin = 0.549 eV above the
GS (relaxation volume of the metastable state −3.189 Å3)
by crossing an energy barrier of 0.64 eV (activation volume
−1.625 Å3); from this state, a second barrier with a 0.091 eV
(activation volume −0.956 Å3) energy brings the system back
into a new GS. The barrier heights and migration volumes are
in good agreement with the results of both experiments and
DFT simulations [18,42,61].

For further validation, the interactions between two vacan-
cies are analyzed, as they are positioned in the first-, second-,
third-, fourth-, fifth-, and sixth-nearest-neighbor sites of each
other (denoted as 1NN, 2NN, 3NN, 4NN, 5NN, and 6NN
sites). The interaction for the 2NN state is strongly attractive
(with a binding energy of approximately 0.240 eV), as seen
in previous studies [17,18,41], while it is only slightly attrac-
tive for the 1NN and 4NN states (with a binding energy of
0.141 and 0.029 eV, respectively). For their part, 3NN, 5NN,
and 6NN sites show a negative binding energy of −0.022,
−0.021, and −0.011 eV, respectively, indicating a repulsive
interaction. For larger clusters, the most stable configurations
tend to maximize the number of 2NN and 1NN vacancy pair-
separation distances.

FIG. 1. Schematic representation of the configurations for planar
and body clusters with one to six vacancies. Blue and red circles
represent crystalline Fe atoms and vacancies, respectively.

B. Structure and stability

To proceed further, we analyze the thermal stability of
the clusters, which are classified into three groups accord-
ing to the shape characteristics of the initial clusters: Linear,
planar, and body clusters. Vacancies in the linear clusters
are positioned along either [100], [110], or [111] directions,
respectively. The planar clusters lie on the [110] plane. The
body clusters are separated into two groups: Tetrahedral type,
with tetrahedral features or s combination of the tetrahedron;
and octahedral type, which tends to form octahedral structure
based on the relevance of cluster structures. The configura-
tions for the planar and body clusters with two–six vacancies
are shown in Fig. 1.

Figure 2 presents the formation and binding energies per
vacancy for different cluster types as functions of vacancy
number. The binding energy generally increases with the va-
cancy number for each cluster type, indicating the preference
for further cluster growth. Moreover, the binding energies for

FIG. 2. (a) Binding energies and (b) formation energies for dif-
ferent vacancy cluster types in α-iron.
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FIG. 3. Activation-energy (left, blue symbols), binding energy at the local minima (left, green line), and squared displacement (right, red
line) as a function of time for one to four Fe vacancies in a bcc crystal at 600 K: (a) one, (b) two, (c) three, and (d) four vacancies.

the tetrahedral- and octahedral-type clusters are higher and
have larger energy gradients. In contrast, the binding energies
of the linear and planar clusters are lower and have smaller
gradients. This is expected as the tetrahedral- and octahedral-
type clusters, with lower surface to volume ratio, should be
more stable and have higher growth tendencies.

C. Small vacancy clusters (two–four vacancies)

We now turn to vacancy aggregation and diffusion mech-
anisms of small vacancy clusters containing two to four
vacancies. Simulations start with the defects placed at a large
enough distance (around 10.2 Å) from each other to ensure
minimal interaction. The detailed activation energy, binding
energy at the local minima, and squared displacement as a
function of time for two to four Fe vacancies in a bcc crystal
at 600 K are shown in Fig. 3. The selected and sampled acti-
vation energies as a function of the KMC step, as well as the
number of events in the catalog per step for events involving
vacancy movement, are shown in Fig. S1 in the Supplemental
Material [66]. The schematic representation and energetic de-
scriptions of the dominant diffusion mechanisms are shown in
Fig. 4.

Due to elastic interactions, the two vacancies aggregate
rapidly, in less than 1.2 μs (2173 KMC steps), into a dimer
with the two-point defects at a 2NN distance from each
other; this represents a ground state with a formation energy
3.204 eV (relaxation volume −5.684 Å3). Table II summa-
rizes the energy landscape for the divacancy complex and
provides information regarding the formation, binding, and
migration energies. Table III indicates the relaxation volume
and migration volume for states with vacancies in the first-
to sixth-nearest-neighbor positions.The divacancy migrates

through two dominant pathways, where the configuration
changes from the second nearest neighbor (GS) to the first-
nearest neighbor and back to the second-nearest neighbor
and from the second-nearest neighbor to the fourth-nearest
neighbor and back to the second-nearest neighbor. The en-
ergy barrier for each of these migration paths is indicated
in Fig. 5, where the green line represents the energy barrier
for migration via the first-nearest-neighbor configuration, and
the blue line represents the energy barrier for migration via
the fourth-nearest-neighbor configuration. Mostly, the diva-
cancy migrates by oscillating between the 2NN and 4NN
states, with an energy barrier of 0.641 eV (migration volume
−1.637 Å3). The 1NN pathway may be expected to be the
dominant mechanism, as one may predict the transition to the
lower-energy 1NN state to have a lower-energy barrier. How-
ever, the 2NN to 1NN transition has an energy barrier of
0.716 eV (migration volume −0.964 Å3), making it kinet-
ically less favorable. The diffusion mechanisms and barrier
heights match previous studies using either ab initio ap-
proaches or empirical potentials (see Table I) [17].

The three isolated vacancies aggregate to form the ground
state in 0.71 μs and 1583 KMC steps, with two 1NN and one
2NN vacancy pair-separation distances, forming an isosceles
triangle. This cluster is characterized by a binding energy of
0.68 eV (0.23 eV per vacancy) as measured from the three
isolated vacancies having a relaxation volume −6.264 Å3.
Once vacancies reach the ground state, eight configurations
dominate the dynamics of the system, representing more than
95% of all accepted configurations. Table IV summarizes the
energy landscape for the eight most stable trivacancies bound
compounds, providing information regarding formation, and
migration energies for states and Table V represents the re-
laxation volume and migration volume for these states. The
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FIG. 4. Schematic representation and energetic descriptions of the dominant diffusion path for (a) one, (b) two, (c) three, and (d) four
vacancies in bcc Fe at 600 K. In the schematic diagrams, the blue and red spheres represent crystalline Fe atoms and vacancies, respec-
tively. In the energetic description, the cross and filled circle represent the saddle points and minima, respectively. The indices (I, II, and
III) are used to identify states and explain the diffusion mechanism. The bound structures of three and four vacancies are indicated as
3V (Nd1 , Nd2 , Nd3 , Nd4 , Nd5 , Nd6 ) and 4V (Nd1 , Nd2 , Nd3 , Nd4 , Nd5 , Nd6 ), respectively. Where Nd1 , Nd2 , Nd3 , Nd4 , Nd5 , and Nd6 represent the total
number of 1NN, 2NN, 3NN, 4NN, 5NN, and 6NN vacancy-pair-separation distances, respectively.

TABLE II. Formation energies (EF
nv), binding energies (Eb

nv), and
migration energies (in eV) for pathways between the six dominant
bound states for the divacancy complex.

�����To
From

1NN 2NN 3NN 4NN 5NN 6NN

EF
nv 3.303 3.204 3.466 3.415 3.465 3.455

EB
nv 0.141 0.240 −0.022 0.029 −0.021 −0.011

1NN 0.716 0.694 0.577
2NN 0.617 0.429
3NN 0.857 0.676
4NN 0.641 0.626 0.589 0.630
5NN 0.738 0.638
6NN 0.670

dominant diffusion mechanism for the trivacancy bound com-
pound is a one-step process associated with a rotation that
involves migrating one vacancy from the ground state to a
first-neighbor site without breaking the triangle, crossing a
barrier of 0.653 eV (migration volume −1.920 Å3) shown in
Fig. 4. The barrier height is in good agreement with previous
literature results (see Table 1) [18,46]. The cluster is stable and
can be broken only by crossing a 0.691-eV barrier, which in-
volves migrating a vacancy to a nearest-neighbor site forming
a complex of two 2NN and one 3NN vacancy pair-separation
distance, 0.084 eV above the GS. Then from this state, the
system is back into a new GS by crossing a second barrier
with an energy of 0.605 eV.

Starting from four isolated vacancies, the ground state for
the tetravacancy is reached in about 0.51 μs and 1482 KMC
steps. The ground state is characterized by four vacancies
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TABLE III. Relaxation volume (V rel) and migration volume (in
Å3) for pathways between the six dominant bound states for the
divacancy complex.

�����To
From

1NN 2NN 3NN 4NN 5NN 6NN

V rel −4.087 −5.684 −4.835 −5.301 −4.854 −5.111
1NN 0.964 −1.077 −0.639
2NN −2.562 −2.021
3NN −1.824 −1.180
4NN 1.637 −1.646 −1.874 −1.687
5NN −1.407 −1.428
6NN −1.498

forming a complex of four 4NN and two 2NN vacancy-
pair-separation distances. As measured from four isolated
vacancies, the binding energy for the ground state is 1.36 or
0.34 eV per vacancy having a relaxation volume of −7.008
Å3. Table VI summarizes the energy landscape providing
information regarding formation, and migration energies and
Table VII represents the relaxation volume and migration vol-
ume for most 10 stable tetravacancies bound compounds. The
dominant diffusion mechanism for the tetravacancy complex
is described in Fig. 4. Diffusion takes place in two steps by
the migration of one vacancy that jumps to 1NN position at
each step. From the ground state, the system reaches a higher-
energy state at 0.179 eV above the GS by crossing an energy
barrier of 0.703 eV; from this state, a second barrier with an
energy of 0.524 eV brings the system back into a new GS.
The migration volume of the dominant diffusion mechanism
is −4.909 Å3. The barrier height we find here agrees with the
previous literature values using different empirical potentials
(see Table I) [33].

D. Five-vacancy cluster

Having characterized the vacancies aggregation and dif-
fusion mechanism of small vacancy clusters containing two
to four vacancies, we now look at the energy landscape and
diffusion mechanisms for five-vacancy clusters. The k-ART
simulations are launched from line dislocation (LD) oriented

FIG. 5. Energetic descriptions of the migration between 2NN
to 1NN (green) and 2NN to 4NN (blue) for divacancy. The
cross and filled circle represent the saddle points and minima,
respectively.

in three crystallographic orientations constructed by removing
five atoms at [100], [110], and [111] directions, respectively,
from the 2000-atom box. Each system is run for 5000 KMC
steps, representing 21.8, 25.9, and 17.7 μs of simulation time
at 600 K for LD5

[100], LD5
[110], and LDS5

[111], respectively,
which allows the complete characterization of the dynamic
evolution of these defects.

Figure 6 represents the cumulative topologies as a func-
tion of KMC step. At the end of the simulations for LD5

[100],
LD5

[110], and LD5
[111] systems, 5122, 12 296, and 2923 topolo-

gies in total are analyzed for new events over 5000 KMC
steps, respectively. Among these topologies, the number of
unique topologies visited for LD5

[100], LD5
[110], and LD5

[111] are
219, 550, and 139, respectively. There are two main features
of the cumulative topology plot, which can be described as the
exploration of new topologies or oscillations between already
encountered topologies. The exploration of new topologies is
illustrated by the increase in cumulative topologies, where the
simulation visits unexplored configurations. Plateaus on the
topology curve indicate the recycling of topologies already
encountered.

Figures 7 and 8 present the energy evolution and the de-
tailed activation energy, binding energy at the local minima,
and squared displacement as a function of time at 600 K,
respectively. The selected and sampled activation energies as
a function of KMC step, as well as the number of events in
the catalog per step for events involving vacancy movement,
are shown in Fig. S2 in the Supplemental Material [66]. As
expected, the LD structure for the five vacancies is quite unsta-
ble and rapidly collapses into a five-vacancy bound complex
irrespective of the initial orientation. The ground state (GS),
composed of six 1NN, three 2NN, and one 3NN vacancy-
pair-separation distance, is reached in about 2.3 μs (1519
KMC steps), 1.8 μs (1935 KMC steps), and 3.1 μs (1789
KMC steps) for LD[100], LD[110], and LD[111], respectively.
Therefore, the initial LD[100], LD[110], and LD[111] structures
are 0.78, 1.83, and 1.16 eV, respectively, above the GS. Going
back to the initial LD structure, the system would need to
cross significant effective barriers of 2.13, 2.44, and 1.75 eV,
respectively, as measured from the ground state. The collapse
of all three LD structures occurs in the same manner, trig-
gered by one atom entering at the corner of the LD structure,
requiring an activation barrier of 0.630, 0.607, and 0.595 eV
for LD5

100, LD5
110, and LD5

111 respectively. The first few steps
of the collapse for each of the three LD structures are shown
in Fig. S3 in the Supplemental Material [66].

Once vacancies reach the ground state, 10 configurations
dominate the dynamics of the system, representing more than
90% of all accepted configurations. Table VIII summarizes the
energy landscape providing information regarding formation
and transition energies and Table IX represents the relaxation
volume and migration volume for the 10 most stable pentava-
cancy bound compounds. Figure 9 represents the three most
dominant diffusion mechanisms denoted as M1, M2, and M3

for this complex. Mechanism M1 is completed going through
one intermediate state. From the ground state, the system
moves to a bound state (0.129 eV above the GS), with a
composition of four 1NN, four 2NN, and two 3NN vacancy-
pair-separation distances by crossing an activation barrier of
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TABLE IV. Formation energy (EF
nv) and migration energies (in eV) for pathways between the eight dominant bound states for the trivacancy

complex. The bound structures of the trivacancy complex are defined as 3V (Nd1 , Nd2 , Nd3 , Nd4 , Nd5 , Nd6 ), where Nd1 , Nd2 , Nd3 , Nd4 , Nd5 , and
Nd6 represent the total number of 1NN, 2NN, 3NN, 4NN, 5NN, and 6NN vacancy-pair-separation distances, respectively.

����To
From

3V (2,1,0,0,0,0) 3V (0,2,0,0,0,1) 3V (0,2,1,0,0,0) 3V (1,1,0,1,0,0) 3V (0,1,0,2,0,0) 3V (1,0,0,1,1,0) 3V (0,0,0,2,1,0) 3V (0,0,1,2,0,0)

EF
nv 4.625 4.685 4.709 4.780 4.867 5.031 5.127 5.128

3V (2,1,0,0,0,0) 0.653 0.605 0.475 0.364
3V (0,2,0,0,0,1)
3V (0,2,1,0,0,0) 0.691 0.60 0.461 0.233
3V (1,1,0,1,0,0) 0.631 0.671 0.521
3V (0,1,0,2,0,0) 0.619 0.608 0.380 0.415
3V (1,0,0,1,1,0) 0.773
3V (0,0,0,2,1,0) 0.640
3V (0,0,1,2,0,0) 0.653 0.676

0.638 eV, followed up with a transition of 0.509 eV system
move to the new GS to complete the migration. Mechanism
M2 is symmetrical and visits two intermediate bound configu-
rations. From the ground state, the system moves to the bound
state (0.211 eV above the GS), which has a composition of
five 1NN, three 2NN, one 3NN, and one 4NN vacancy-pair-
separation distances, crossing a 0.740-eV, then a 0.513-eV
barrier, to bring the system into a new intermediate bound
state with the same structure. Finally, the system reaches a
translated GS by crossing a 0.528-eV barrier. Like M2, mech-
anism M3 is also symmetrical and is completed through four
intermediate bound states having an overall migration barrier
of 0.937 eV. The migration volumes of the mechanism M1, M2

and M3 are −6.570, −5.208, and −6.743 Å3, respectively.

E. Eight-vacancy cluster

To see how the collapse of the line dislocation (LD)
structure occurs as the LD size increases, we analyze the
LD structure containing eight vacancies along [100], [110],
and [111] directions. These systems are run for 7000 KMC
steps representing 280, 250, and 122 μs of simulation time
for LD[100], LD[110], and LD[1111], respectively at 600 K. At
the end of the simulations, around 6202, 7331, and 6347
topologies have been analyzed for new events for LD[100],
LD[110], and LD[1111], respectively. Among these, the number
of unique topologies visited, i.e., selected during the kinetics,

for LD5
[100], LD5

[110] and LD5
[111], are 298, 332, and 253, re-

spectively. Figure 10 plots the energy evolution and Fig. 11 the
detailed activation energy, binding energy at the local minima,
and squared displacement as a function of time at 600 K. The
selected and sampled activation energies as a function of the
KMC step, as well as the number of events in the catalog per
step for events involving vacancy movement, are shown in
Fig. S4 in the Supplemental Material [66]. As for the five-
vacancy LDs, the structures collapse into an eight-vacancy
bound compact complex, but over a timescale 2 to 10 times
longer: The ground state (GS) is reached in about 53.9 μs
(2566 KMC steps), 112.8 μs (5132 KMC steps), and 0.2 μs
(663 KMC steps) for LD[100], LD[110], and LD[111], respec-
tively. This is accompanied by a relaxation of 2.45, 4.25, and
3.12 eV, respectively, from the initial LD[100], LD[110], and
LD[1111] structures. Going back to the initial LD structure, the
system must cross significant effective barriers of 3.69, 5.02,
and 3.85 eV, respectively, as measured from the ground state.

The ground state of the eight-vacancy cluster has a combi-
nation of twelve 1NN, eight 2NN, four 3NN, and four 4NN
vacancy-pair-separation distances. This cluster is character-
ized by a binding energy of 4.139 eV (0.517 eV per vacancy).
While a large number of states are accessed during the simu-
lation, three actual diffusion events take place after the bound
complex is formed. Including various oscillations, mechanism
M1 takes place over 74 KMC steps over 1 μs, mechanism M2

takes place over 376 KMC steps over 4.9 μs, and mechanism

TABLE V. Relaxation volume (V rel) and migration volume (in Å3) for pathways between the eight dominant bound states for the trivacancy
complex. The bound structures of the trivacancy complex are defined as 3V (Nd1 , Nd2 , Nd3 , Nd4 , Nd5 , Nd6 ), where Nd1 , Nd2 , Nd3 , Nd4 , Nd5 , and
Nd6 represent the total number of 1NN, 2NN, 3NN, 4NN, 5NN, and 6NN vacancy-pair separation distances, respectively.

����To
From

3V (2,1,0,0,0,0) 3V (0,2,0,0,0,1) 3V (0,2,1,0,0,0) 3V (1,1,0,1,0,0) 3V (0,1,0,2,0,0) 3V (1,0,0,1,1,0) 3V (0,0,0,2,1,0) 3V (0,0,1,2,0,0)

V rel −6.264 −8.957 −8.702 −7.353 −8.744 −6.521 −7.880 −7.830
3V (2,1,0,0,0,0) −1.920 −1.105 −1.574 −0.953
3V (0,2,0,0,0,1)
3V (0,2,1,0,0,0) −3.542 −2.667 −1.731 −2.244
3V (1,1,0,1,0,0) −2.663 −1.319 −1.284
3V (0,1,0,2,0,0) −1.774 −2.67 −2.210 −2.068
3V (1,0,0,1,1,0) −1.210
3V (0,0,0,2,1,0) −1.344
3V (0,0,1,2,0,0) −1.372 −1.153
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TABLE VI. Formation energy (EF
nv) and migration energies (in eV) for pathways between the 10 dominant bound states for the tetravacancy

complex. The bound structures of the tetravacancy complex are defined as 4V (Nd1 , Nd2 , Nd3 , Nd4 , Nd5 , Nd6 ), where Nd1 , Nd2 , Nd3 , Nd4 , Nd5 , and
Nd6 represent the total number of 1NN, 2NN, 3NN, 4NN, 5NN, and 6NN vacancy-pair-separation distances, respectively.

���To
From

4V (4,2,0,0,0,0) 4V (3,2,1,0,0,0) 4V (3,2,0,1,0,0) 4V (4,1,1,0,0,0) 4V (2,2,0,2,0,0) 4V (2,2,1,1,0,0) 4V (3,1,0,1,1,0) 4V (3,1,1,1,0,0) 4V (1,2,1,2,0,0) 4V (2,1,1,1,1,0)

EF
nv 5.763 5.942 5.945 6.014 6.093 6.127 6.195 6.196 6.262 6.376

4V (4,2,0,0,0,0) 0.524 0.555 0.410 0.376

4V (3,2,1,0,0,0) 0.703 0.483 0.407 0.498 0.272

4V (3,2,0,1,0,0) 0.485 0.478 0.373

4V (4,1,1,0,0,0) 0.804 0.479 0.284

4V (2,2,0,2,0,0) 0.648 0.432

4V (2,2,1,1,0,0) 0.773 0.660 0.511 0.595

4V (3,1,0,1,1,0) 0.664 0.389

4V (3,1,1,1,0,0) 0.525 0.318

4V (1,2,1,2,0,0) 0.690 0.619 0.377

4V (2,1,1,1,1,0) 0.988 0.654 0.570 0.499 0.318

M3 takes place over 423 KMC steps over 21.5 μs. Reducing
the process to its essential steps, the diffusion mechanisms
M1, M2, and M3 for the eight-vacancy cluster can be reduced
to 6, 13, and 25 jumps, respectively, as shown in Fig. 12.
For the mechanisms, M1, M2, and M3, the migration energy
(migration volume) over pathways connecting ground states
is 1.093 eV (−2.907 Å3), 1.271 eV (−4.623 Å3), and 1.30 eV
(−2.964 Å3), respectively, with M1 being the most probable
diffusion mechanism at 600 K.

F. Lifetime and diffusion coefficients of vacancy cluster

The average thermal lifetime and diffusion coefficient for
the various clusters are listed in Table X. Both the two-
and three-vacancy clusters have diffusion coefficients on the
same order of magnitude as a single vacancy, with 4.7 × 108

Å2 s−1 and 4.7 × 108 Å2 s−1, respectively. The average ther-
mal lifetimes for the two- and three-vacancy clusters are 0.036
and 0.2 μs, respectively. The bound two- and three-vacancy
cluster compounds diffuse for an average of 24 and 224
steps, respectively, before dissociating. Further increasing the
number of vacancies in the cluster (four- and five-vacancy
clusters) significantly decreases the diffusion coefficient. The

diffusion coefficient of four- and five-vacancy clusters is one
and three orders of magnitude lower than that of a single
vacancy, respectively: 1.1 × 107 Å2 s−1 and 9 × 105 Å2 s−1.
Their lifetimes at 600 K are 3 and 13 μs, respectively. The
bound clusters of four and five vacancies diffuse on av-
erage 122 and 145 steps, respectively, before dissociating.
Even a cluster of eight vacancies can be mobile with a
diffusion coefficient of 1.8 × 104 Å2 s−1 associated with a
relatively high migration energy (>1 eV). Our results regard-
ing the average thermal lifetime are qualitatively consistent
with those of previous experiments [67–69]. Larger vacancy
clusters have longer thermal lifetimes, which contributes to
the kinetic stabilization of vacancy clusters. However, there
are quantitative discrepancies between our results and ex-
perimentally determined lifetimes. These discrepancies arise
from the fact that the criteria for sinking and temperature are
different.

G. Relations between migration barriers, minimum
energies, and migration volumes

The correlation between migration energy, minimum en-
ergy, and migration volume for vacancy clusters with two

TABLE VII. Relaxation volume (V rel) and migration volume (in Å3) for pathways between the 10 dominant bound states for the
tetravacancy complex. The bound structures of the tetravacancy complex are defined as 4V (Nd1 , Nd2 , Nd3 , Nd4 , Nd5 , Nd6 ), where Nd1 , Nd2 , Nd3 ,
Nd4 , Nd5 , and Nd6 represent the total number of 1NN, 2NN, 3NN, 4NN, 5NN, and 6NN vacancy-pair-separation distances, respectively.

����To
From

4V (4,2,0,0,0,0) 4V (3,2,1,0,0,0) 4V (3,2,0,1,0,0) 4V (4,1,1,0,0,0) 4V (2,2,0,2,0,0) 4V (2,2,1,1,0,0) 4V (3,1,0,1,1,0) 4V (3,1,1,1,0,0) 4V (1,2,1,2,0,0) 4V (2,1,1,1,1,0)

V rel −7.008 −8.352 −8.427 −6.910 −9.612 −9.30 −7.958 −7.830 −10.650 −8.456

4V (4,2,0,0,0,0) −3.565 −6.737 −1.351 −0.256

4V (3,2,1,0,0,0) −4.909 −4.163 −6.662 −1.217 −4.440

4V (3,2,0,1,0,0) −4.237 −3.453 −1.661

4V (4,1,1,0,0,0) −6.639 −4.166 ?

4V (2,2,0,2,0,0) −2.477 −1.701

4V (2,2,1,1,0,0) −3.643 −4.324 −5.993 −2.728

4V (3,1,0,1,1,0) −1.386 −3.328

4V (3,1,1,1,0,0) −3.918 −3.784

4V (1,2,1,2,0,0) −3.885 −2.739 −2.992

4V (2,1,1,1,1,0) −1.704 −3.826 −4.410 −4.251
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FIG. 6. Evolution of the number of topologies as a function of
KMC steps for initial line dislocation contains five vacancies along
[100] (top), [110] (middle), and [111] (bottom).

to five vacancies is shown in Fig. 13. The plots in the left
column show the migration energy as a function of the energy
at the local minima measure with respect to the ground state.
We observe a noisy but clear correlation, with the migration
energy decreasing with higher-energy minima. This corre-
lation can be explained by the fact that a strong local
deformation increases the local energy mainly by weakening
the interactions. Additional information about the physics be-
hind the barriers is obtained by plotting the migration energy
as a function of migration volume. Here, however, we do
not observe significant correlation between the migration vol-
ume and the diffusion barriers. This suggests that the elastic
deformation that leads to the correlation found in the
left-column graphs is not dominated by local volume ex-
pansion or contraction but involves more complex bounding
terms.

FIG. 7. Energy evolution of five vacancies as a function of time at
600 K: Red, blue, and green lines for initial line dislocation structures
along [100], [110], and [111], respectively.

IV. DISCUSSION

The kinetics of vacancies plays an essential role in de-
termining the properties of a material. Understanding the
aggregation and diffusion mechanisms of vacancies is there-
fore a crucial step in further exploring the mechanical and
electrical properties of structural materials associated with the
formation of vacancies by deformation or radiation [70–74].
However, experimental approaches are generally unable to
provide the required detailed microscopic information that
would allow us to fully understand this role. Direct calcula-
tions can compensate for experimental limitations in the case
of simple point defects, but the rapidly increasing complexity
of the energy landscape of even small clusters requires au-
tomated search tools such as the kinetic activation-relaxation
technique (k-ART).

Accessing large timescale and system sizes, k-ART simu-
lations presented here provide a detailed characterization of
vacancy aggregation and clustering diffusion processes and
the associated energy landscapes, showing a relatively com-
plex picture even for the simplest systems. This picture is
well characterized with k-ART since the catalog is updated
and expanded at every step as new topologies are explored.

We analyze the energy landscape associated with bcc
crystalline Fe containing one to eight vacancies. The more
complete energy landscape generated here and obtained with
simulations that reached several hundred microseconds allows
us to identify new mechanisms. Comparison with previously
published works [19,42] for the monovacancy diffusion, using
EAM force fields, confirms that the correct basic diffusion
mechanisms are recovered for this system. For small vacancy
cluster diffusion with two to four defects, the mechanisms pre-
dicted and diffusivity trends match those seen in the literature
[17–19,33]. For divacancy, a global minimum energy with
a V − V distance separation of the second-nearest neighbor
(2NN) is found, in agreement with previous MD and DFT
studies. The mechanism of migration of the divacancy in iron
consists of an oscillation not only between 2NN and 1NN
states but also, largely, between 2NN and 4NN states, even
though the 1NN state is strongly bound compared to the
4NN state. These thermodynamically counterintuitive diffu-
sion mechanisms of divacancy could easily be misidentified
when using simpler approaches, e.g., the nudged elastic band
method (NEBM). Although these mechanisms have been
captured with traditional KMC and careful analysis of DFT
results [17], here they arise naturally without any special con-
sideration or bias. For trivacancy cluster, the migration energy
of the dominant diffusion mechanism is 0.64 eV, very close
to the diffusion barrier for monovacancy. Previously, using
DFT-NEBM, Fu et al. [19] obtained an activation energy of
0.35 eV lower than the value that we find here; however, the
general mechanism matches the one presented here. However,
Kandaskalov et al. [18] repeated the DFT study and reported
results of two types of numerical simulations: In the first simu-
lation, the Fe atom is fixed between the two nearest vacancies,
and in the second simulation, it is placed in the center of a
four-vacancy. In the first case, the mechanism obtained, with
a 0.64-eV barrier, matches the mechanism found here while
the second simulation leads to a 0.36-eV barrier that has not
been generated here, even with additional ARTn searches.
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FIG. 8. Activation-energy (left, blue symbols), binding energy at the local minima (left, green line), and squared displacement (right, red
line) as a function of time for the line dislocation of five vacancies along [100] (top left), [110] (top right), and [111] (bottom center) direction
in a bcc Fe at 600 K.

Looking at the tetravacancy, we find that the dominant
mechanism has a 0.703-eV barrier, a little higher than the
values found in previous DFT calculations [18,19]. This could
be due to image interactions introduced by the small unit-cell
supercell used or to accuracy issues with the EAM potential.
A recent DFT work, however, indicates significant finite-size
effects affecting the height of the calculated energy barriers
[75]. Nevertheless, the match in the mechanism pathway is
reassuring and indicates the key physics is being captured by
the potential. The barrier height we find here agrees with the
previous literature value using different empirical potentials
[33]. Furthermore, during simulation, we find that degenerate
or quasidegenerate saddle points are not so rare. These states
play an essential role in cluster diffusion. Even though larger

vacancy clusters are less mobile, they can still move, and we
identified diffusion mechanisms for five- and eight-vacancy
clusters.

To understand the effects of stress on diffusion, we analyze
the elastic dipole tensors and relaxation volume tensors at
both equilibrium and the saddle point, while also examining
the migration volume along diffusion pathways for vacancy
clusters.

Table XI summarizes the elastic dipole and relaxation
volume tensor in both the equilibrium and transition states
highlighting the migration volume along the [111̄] direction
for monovacancy. In agreement with previous DFT results of
Ma et al. [61], we also observe a negative migration volume
for monoacancy in α-iron. The value of migration volume

TABLE VIII. Formation energy (EF
nv) and migration energies (in eV) for pathways between the 10 dominant bound states for the

pentavacancy complex. The bound structures of the pentavacancy complex are defined as 5V (Nd1 , Nd2 , Nd3 , Nd4 , Nd5 , Nd6 ), where Nd1 , Nd2 ,
Nd3 , Nd4 , Nd5 , and Nd6 represent the total number of 1NN, 2NN, 3NN, 4NN, 5NN, and 6NN vacancy-pair-separation distances, respectively.

���To
From

5V (6,3,1,0,0,0) 5V (4,4,2,0,0,0) 5V (5,3,1,1,0,0) 5V (4,3,0,2,0,1) 5V (4,3,2,0,1,0) 5V (4,3,1,2,0,0) 5V (5,2,2,1,0,0) 5V (3,3,3,1,0,0) 5V (4,2,2,2,0,0) 5V (0,5,4,0,1,0)

EF
nv 6.873 7.002 7.084 7.234 7.257 7.258 7.333 7.468 7.497 7.509

5V (6,3,1,0,0,0) 0.509 0.528 0.348 0.429

5V (4,4,2,0,0,0) 0.638 0.803 0.293 0.412 0.480

5V (5,3,1,1,0,0) 0.740 0.513 0.501 0.621 0.477 0.363 0.381

5V (4,3,0,2,0,1) 0.651 0.623

5V (4,3,2,0,1,0) 0.477 0.574

5V (4,3,1,2,0,0) 0.548 0.795 0.429 0.362

5V (5,2,2,1,0,0) 0.808 0.726 0.723 0.552 0.504 0.590 0.268

5V (3,3,3,1,0,0) 1.024 0.748 0.725

5V (4,2,2,2,0,0) 0.906 0.794 0.601 0.432

5V (0,5,4,0,1,0) 0.987 0.826
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TABLE IX. Relaxation volume (V rel) and migration volume (in Å3) for pathways between the 10 dominant bound states for the
pentavacancy complex. The bound structures of the pentavacancy complex are defined as 5V (Nd1 , Nd2 , Nd3 , Nd4 , Nd5 , Nd6 ), where Nd1 , Nd2 ,
Nd3 , Nd4 , Nd5 , and Nd6 represent the total number of 1NN, 2NN, 3NN, 4NN, 5NN, and 6NN vacancy-pair-separation distances, respectively.

���To
From

5V (6,3,1,0,0,0) 5V (4,4,2,0,0,0) 5V (5,3,1,1,0,0) 5V (4,3,0,2,0,1) 5V (4,3,2,0,1,0) 5V (4,3,1,2,0,0) 5V (5,2,2,1,0,0) 5V (3,3,3,1,0,0) 5V (4,2,2,2,0,0) 5V (0,5,4,0,1,0)

V rel −7.943 −11.015 −9.078 −10.434 −10.508 −10.629 −8.968 −11.291 −10.202 −15.325

5V (6,3,1,0,0,0) −3.119 −4.072 −3.647 −0.824

5V (4,4,2,0,0,0) −6.570 −10.541 −4.390 −8.226 0.106

5V (5,3,1,1,0,0) −5.208 −4.153 −1.163 −5.590 −5.718 −3.005 −6.032

5V (4,3,0,2,0,1) −2.519 −2.152

5V (4,3,2,0,1,0) −3.402 −0.35

5V (4,3,1,2,0,0) −4.004 −7.141 −6.766 −4.177

5V (5,2,2,1,0,0) −4.672 −5.608 −0.686 −3.694 −5.109 −1.546 −5.765

5V (3,3,3,1,0,0) −4.172 −5.219 −3.869

5V (4,2,2,2,0,0) −7.413 −7.156 −3.750 −6.999

5V (0,5,4,0,1,0) −4.204 −5.167

FIG. 9. Schematic representations of diffusion pathways (a)–(c) and corresponding energetic evolution (d)–(f ) for the three most dominant
diffusion mechanisms M1, M2, and M3, respectively associated with the five-vacancy cluster in bcc Fe at 600 K. In the schematic diagrams, the
blue and red spheres represent crystalline Fe atoms and vacancies, respectively. The cross and filled circles on the energetic graphs represent
the saddle points and minima, respectively. Indices (I, II, III, etc.) are used to identify states and explain the diffusion mechanism. The bound
structures are defined as 5V (Nd1 , Nd2 , Nd3 , Nd4 , Nd5 , Nd6 ), where Nd1 , Nd2 , Nd3 , Nd4 , Nd5 , and Nd6 represent the total number of 1NN, 2NN, 3NN,
4NN, 5NN, and 6NN vacancy-pair-separation distances, respectively.
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FIG. 10. Energy evolution of eight vacancies as a function of
time at 600 K: Red, blue, and green lines for the initial line dislo-
cation structures along [100], [110], and [111], respectively.

found in our study is slightly smaller than that of Ref. [61]:
Our calculations yield a migration volume of −1.625 Å3

for monovacancy in Fe, while Ma et al. obtained −0.238
Å3. This discrepancy is primarily due to different lattice pa-
rameters: Ma et al. [61,76] assumed an equilibrium lattice
parameter of 2.831 Å, whereas our fixed volume calculations
assume 2.8553 Å. A negative migration volume indicates a
decrease in migration energy and an increase in the diffusion
coefficient during hydrostatic compression. Figure 14 shows
monovacancy migration energies and diffusion coefficients
change with pressure at a temperature of 600 K. With in-
creasing pressure from 0 to 12 kbar, monovacancy migration
energy decreases by 0.012 eV, while the diffusion coefficient

FIG. 11. Activation-energy (left, blue symbols), binding energy at the local minima (left, green line), and squared displacement (right,
redline) as a function of time for the line dislocation of eight vacancies along [100] (top left), [110] (top right), and [111] (bottom center)
direction in a bcc Fe at 600 K.

increases by 2.94 × 10−15 m2 s−1. Conversely, during lattice
expansion with negative pressure from 0 to 12 kbar, migra-
tion energy increases by 0.013 eV, and diffusion coefficient
decreases by 2.44 × 10−15 m2 s−1.

Moreover, we find that the off-diagonal elements of the
elastic dipole and the relaxation volume tensor for vacancies
are zero at equilibrium and change to nonzero values at the
saddle point along the diffusion paths. The results are similar
to those found with DFT calculations [61,76,77] and molecu-
lar statics [78], indicating that the applied shear stress may
have a significant effect on vacancy diffusion as variations
in migration barriers caused by external stress interactions
can lead to directional differences and anisotropic diffusion.
Furthermore, for vacancy clusters, we find no clear trend in
the variation of migration volume for the identified dominant
pathways (Table III, V, VII, IX), suggesting that pressure
effects on transition states finely depend on the local environ-
ment (see Fig. 15).

In summary, the presence of external stresses or local stress
fields resulting from extended defects can increase the com-
plexity of vacancy cluster diffusion. These conditions may
favor mechanisms that may be neglected in analyses with a
limited viewpoint, ultimately exerting a substantial influence
on the overall material properties.

V. CONCLUSION

Using the kinetic activation-relaxation technique (k-ART)
coupled with an embedded-atom method (EAM) potential,
we study the vacancy aggregation and clustering diffusion
processes in α-Fe. Our results show a richness in the diffusion
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FIG. 12. Energy barriers and square displacement for the diffusion mechanism (ground state to ground state) of eight-vacancy cluster.
Numeric numbers (i to x) represent the bound states, where (i) 8V (12, 8, 4, 4, 0, 0), (ii) 8V (12, 7, 5, 3, 1, 0), (iii) 8V (12, 7, 5, 4, 0, 0),
(iv) 8V (12, 7, 4, 4, 1, 0), (v) 8V (12, 7, 4, 4, 0, 1), (vi) 8V (10, 8, 6, 2, 2, 0), (vii) 8V (11, 7, 5, 4, 1, 0), (viii) 8V (10, 7, 4, 6, 0, 1), (ix)
8V (11, 6, 4, 5, 1, 1), and (x) 8V (10, 6, 4, 5, 2, 1).

mechanisms as well as a complex balance between elastic and
chemical effects. By reaching physically relevant timescales
without presuppositions regarding mechanisms and elastic
effects, this approach provides a detailed and reliable rep-
resentation of the migration pathways of vacancy clusters,
including rare pathways that are orders of magnitude less
likely to occur in pure Fe than the dominant ones.

We find that the diffusion barriers of vacancies do not
change monotonically with cluster size. Moreover, the number
of possible barriers is much larger than previously identi-
fied. Even focusing on the barriers relevant at 600 K, we
find considerable complexity that prevents the use of simplis-
tic diffusion models. Degenerate or quasidegenerate saddle

TABLE X. Average cluster lifetimes and diffusion coefficients
for different vacancies at 600 K.

Average thermal lifetime Diffusion coefficient
Cluster (s) ( Å2 s1)

1V 7.17 × 108

2V (3.6 ± 0.01) × 10−8 (4.7 ± 0.01) × 108

3V (2.0 ± 0.01) × 10−7 (2.2 ± 0.01) × 108

4V (3.0 ± 0.01) × 10−6 (1.1 ± 0.02) × 107

5V (1.3 ± 0.01) × 10−5 (9.0 ± 0.04) × 105

8V 1.8 × 104

points, for example, are much more common than generally
thought. As discussed, these states play a significant role in
cluster diffusion. As for the diffusion coefficient, we find
that divacancies and trivacancies diffuse on the same order
of magnitude as monovacancies. The stabilization of vacancy
clusters is achieved both by energetics, with larger vacancy
clusters having lower energy, and by kinetics: The thermal
lifetime of vacancy clusters increases with cluster size. Yes,
these larger clusters are less likely to interact with each
other, as their diffusion coefficient decreases significantly with
size.

Overall, these results provide a much deeper understanding
of the microscopic and kinetic picture of vacancy clusters
in α-Fe, a qualitative understanding that should be valid for
all bcc metals. The complex energetic environment control-
ling the kinetics of small vacancy clusters presented here
demonstrates that simple rules are not sufficient to develop
a robust approach to predictive control and prevention of
damage processes associated with vacancy clusters in struc-
tural metals. More work is needed to better characterize this
behavior and derive general rules. It is clear that additional
simulations are needed to capture the energy landscape of
vacancy cluster diffusion in other materials or the presence
of strains, defects, or impurities; simulations to this end are
underway.

Previous work [79] indicates that the presence of vacan-
cies decreases the Curie temperature of a system; however,
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FIG. 13. Left: Relation between the energy minimum Emin and the migration energy Em; right: Migration energy versus migration volume
V m for the same events. From top to bottom, the panels present data for most stable bound configurations two vacancies (listed in Table II) (top
line), three vacancies (listed in Table IV) (second line), four vacancies (listed in Table VI) (third line), and five vacancies (listed in Table VIII)
(bottom line).

magnetic moments increase in the vicinity of vacancies.
More work is therefore needed to fully understand how these
bound vacancy clusters influence the magnetic properties of
bulk iron. As large simulation box sizes are needed to limit
self-interactions for these complex configurations, calculating
these properties is, however, a significant project in itself.

In summary, if the use of empirical potential limits the
general application to defect kinetics, the agreement with DFT

calculations for some of the simpler mechanisms suggests
that the main results presented here are physically relevant.
On a qualitative level, these show that complex diffusion
mechanisms can be important even in systems as simple as
the one presented here. Recovering dominant diffusion, but
also trapping mechanisms (for instance, the transition between
2NN state to 1NN state for divacancy cluster), requires much
more than the simple identification of a few configurations by
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TABLE XI. Elastic dipole tensor Pi j (in eV), relaxation volume tensor Vi j (in Å3) of both ground state (GS) and transition states (TS), and
migration volume V m (in Å3) along the [111̄] direction for monovacancy in bcc iron.

Pi j (in eV) Vi j (in Å3) V m (in Å3)

GS

⎛
⎝−2.808 0 0

0 −2.808 0
0 0 −2.808

⎞
⎠

⎛
⎝−0.843 0 0

0 −0.843 0
0 0 −0.843

⎞
⎠ −1.625

TS

⎛
⎝ −4.60 −1.802 1.802

−1.802 −4.60 1.802
1.802 1.802 −4.60

⎞
⎠

⎛
⎝−1.382 −0.541 0.541

−0.541 −1.382 0.541
0.541 0.541 −1.382

⎞
⎠

symmetry analysis or through molecular dynamics, as the lat-
ter cannot deliver a detailed characterization for temperatures
well below melting mainly because some of the transforma-
tions require dwelling metastable states that cannot endure in
these high temperatures and can only play a dynamical and
structural role at a lower temperature.

FIG. 14. Variation migration energy Em (top) and diffusion co-
efficient D (bottom) as a function of pressure for monovacancy in
α-iron at temperature 600 K: Under isotropic pressure (blue square),
pressure along the x direction (red circle) and pressure along the y
and z directions (green triangle).

Accelerated methods such as the kinetic ART provides
detailed and rich information regarding mechanisms that we
did not know existed until now. The systematic use of such
methods will continue to enrich significantly our understand-
ing of diffusion at the atomistic level in materials.

The most recent packages for k-ART and ARTn are avail-
able freely upon request [80].
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