
Computer Physics Communications 295 (2024) 108961

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computer Programs in Physics

pARTn: A plugin implementation of the Activation Relaxation Technique

nouveau that takes over the FIRE minimisation algorithm ✩,✩✩

M. Poberznik a, M. Gunde e, N. Salles a,∗, A. Jay b, A. Hemeryck b, N. Richard c, N. Mousseau d,
L. Martin-Samos a

a CNR-IOM/Democritos National Simulation Center, Istituto Officina dei Materiali, c/o SISSA, via Bonomea 265, IT-34136 Trieste, Italy
b LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
c CEA, DAM, DIF, F-91297 Arpajon, France
d Université de Montréal, Canada
e Institute Rud̄er Bošković, Bijenička 54, 10000 Zagreb, Croatia

A R T I C L E I N F O A B S T R A C T

Keywords:

Saddle point
Potential energy surface
Transition state
Chemical reaction

Nowadays, the interoperability and interfacing of codes and libraries have become crucial aspects of software
development and engineering, and the basis for enabling and simplifying the sharing of methods and tools,
both within and among communities. One of the most important bottlenecks that arises when developing and
maintaining an interface of a library with an already existing software, is to keep it aligned with the development
route of the latter. This might include significant changes, such as changes in the data structures used by the
library, which are communicated through the interface.
In this paper, an approach for inserting a new algorithm into existing software is presented, through a minimally
invasive interface, that takes over an already present algorithm, and thus changes its original purpose. The
approach is applied to the well-established Activation-Relaxation Technique nouveau (ARTn) algorithm, that is
revisited and re-engineered to bias and take over the FIRE minimization algorithm, as presently implemented in
two community codes for atomistic simulations, namely Quantum ESPRESSO (PWscf) and LAMMPS. ARTn is a
well established single-ended saddle-point search algorithm that allows for the exploration of potential energy
surfaces. The resulting algorithm acts as a plugin, and is distributed in the form of an external library (pARTn).

Program summary

Program Title: plugin Activation Relaxation Technique nouveau (pARTn)
CPC Library link to program files: https://doi .org /10 .17632 /xpwr56d2yk .1
Developer’s repository link: https://gitlab .com /mammasmias /artn -plugin
Licensing provisions: Apache-2.0/GPLv3
Programming language: Modern Fortran and C++
Nature of problem: Original ARTn implementation was difficult to interface, port and maintain.
Solution method: Full refactoring and re-engineering into a library, which utilizes and biases a minimization
algorithm already implemented in the engine, to make it behave as ARTn. The biasing is done by reverse-
engineering specific external conditions that drive the displacement of atoms.
✩ The review of this paper was arranged by Prof. Blum Volker.
✩✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www .sciencedirect .
com /science /journal /00104655).

* Corresponding author.

1. Introduction

Commonly used energy/force (E/F) engines in the field of atom-
istic simulations generally implement some integration algorithm (in-
Available online 18 October 2023
0010-4655/Crown Copyright © 2023 Published by Elsevier B.V. All rights reserved.

E-mail address: nsalles33@gmail.com (N. Salles).

https://doi.org/10.1016/j.cpc.2023.108961
Received 10 January 2023; Received in revised form 2 October 2023; Accepted 7 Oc
tober 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
https://doi.org/10.17632/xpwr56d2yk.1
https://gitlab.com/mammasmias/artn-plugin
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:nsalles33@gmail.com
https://doi.org/10.1016/j.cpc.2023.108961
https://doi.org/10.1016/j.cpc.2023.108961
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2023.108961&domain=pdf

M. Poberznik, M. Gunde, N. Salles et al.

tegrator) for solving the equations of motion (such as Verlet [1]), or
for constraining the movement toward energy minimization (such as
FIRE [2] and BFGS [3]). These algorithms are implemented as a se-
ries of steps enclosed in a main loop, which continues as long as an
exit criterion is not met, i.e., Algorithm 1. Each step of the main loop
first computes the instantaneous properties of the current configura-
tion, such as velocity or force, which are then used to generate the
atomic displacement. If these instantaneous properties are modified,
the resulting atomic displacement will be different. This is typically
exploited for the application of external fields and constraints to the
system of simulation. The same idea can however be used with other
intentions: by appropriate modification of the instantaneous proper-
ties, a specifically desired atomic displacement can be imposed on the
system.

In this line of thought, any algorithm present in a software could
be biased by controlled modifications of the instantaneous proper-
ties, to the extent where the original purpose of the algorithm gets
effectively overwritten by a different purpose, and thus the original
algorithm gets taken over by another algorithm. The modification of
instantaneous properties can be achieved through the application of
external conditions on the system, and since the functions implement-
ing them are generally not invasive to the native E/F engine, biasing
and overwriting an algorithm in such a way is independent of the
specific details of the engine, such as parallelization strategies, or the
handling of charge densities. As a result, an implementation of an algo-
rithm following this paradigm is easier to port, as well as maintain and
align with respect to upgrades in E/F engine versions. A similar idea
has already been implemented by PLUMED [4] for example, to steer
metadynamics.

ARTn (Activation-Relaxation Technique nouveau [5–9]) is an open-
ended saddle point search algorithm used in many different fields,
ranging from materials science to molecular and biological science.
Previous ARTn implementations interacted with E/F engines – such as
BigDFT [10], VASP [11], Quantum ESPRESSO [9] and LAMMPS [12]
– via subroutines within the main ARTn program. This implementa-
tion route was making it very difficult to handle the specifics of each
E/F engine within a standardised interface, which means that separate
ARTn versions had to be developed for each of the aforementioned E/F
engines.

In the present work, we apply the biasing paradigm to the FIRE
algorithm [2,13], to effectively re-purpose it and make it behave as
the ARTn algorithm. To this end, the ARTn algorithm is rewritten as a
library, that can be used as a plugin for different E/F engines (pARTn).

The present paper is structured as follows. Sections 2 to 5 describe
the biasing/re-purposing concept, the mathematical relations, and their
application to FIRE and ARTn. Section 6 describes the implementation
details of the pARTn library. Section 7 is devoted to APIs/interface rou-
tines and their description for the particular case of biasing and taking
over the FIRE routines in Quantum ESPRESSO [14] and LAMMPS [15].
Section 8 provides a brief package description and a quick installation
guide. Finally, sections 9 and 10 describe the input and output parame-
ters and show two working examples, respectively.

Algorithm 1: Generic integrator pseudo-algorithm. The com-
ment in the line 3 indicates the point of entry of the re-
purposing paradigm.

1 while continue do

2 calculate {𝐪(𝑖)}
3 apply external conditions /* bias */

4 compute Δ𝐑({𝐪(𝑖)}), Eq. (2) /* apply 𝐹 */

5 update 𝐑(𝑖 + 1) =𝐑(𝑖) +Δ𝐑, Eq. (1)

6 if exit criterion then

7 exit
8 end

9 end
2

Computer Physics Communications 295 (2024) 108961

2. The concept

Integration algorithms are generally written in terms of the positions
𝐑(𝑖), and displacements Δ𝐑. A generic pseudo-algorithm is shown in
Algorithm 1. The atomic positions 𝐑(𝑖) at step 𝑖 are updated by the
application of Δ𝐑, as Eq. (1).

𝐑(𝑖+ 1) =𝐑(𝑖) + Δ𝐑 (1)

Depending on the specific algorithm, the term Δ𝐑 is some function of
the set of instantaneous properties {𝐪(𝑖)} = {𝐪1(𝑖), 𝐪2(𝑖), ... , 𝐪𝑛(𝑖)},
e.g. the force 𝐅(𝑖), velocity 𝐯(𝑖), or possibly others (charge, polarization,
etc), and the timestep Δ𝑡:

Δ𝐑 =Δ𝐑({𝐪(𝑖)}) = Δ𝐑(𝐅(𝑖), 𝐯(𝑖), ... , Δ𝑡) (2)

A single iteration of the main integration loop consists of two actions:
first the evaluation of the properties {𝐪(𝑖)}, at line 2 of Algorithm 1, and
second the subsequent update of the atomic positions 𝐑(𝑖) to 𝐑(𝑖 +1), at
line 5 of Algorithm 1, via the Δ𝐑 obtained by the integrator (prescribed
by Eq. (2)). The form of Eq. (2) is specific to the integrator algorithm
used, and can be seen as application of a function 𝐹 , which returns a
displacement Δ𝐑, from a set of given instantaneous properties {𝐪(𝑖)}.

𝐹 ∶ {𝐪(𝑖)}→Δ𝐑 (3)

In order to bias an algorithm and take it over with another algo-
rithm, the re-purposing scheme needs at least two components. Firstly,
its own algorithm which prescribes a displacement Δ𝐑𝑝, and sec-
ondly, a way to constrain and take over the host algorithm to perform
the prescribed displacement Δ𝐑𝑝 instead of Δ𝐑, such that 𝐑(𝑖 + 1) =
𝐑(𝑖) + Δ𝐑𝑝.

The re-purposing scheme only enters the main loop of the host al-
gorithm once per iteration step (Algorithm 1 line 3), so it needs to
be written such that each time it is called, it only prescribes one dis-
placement Δ𝐑𝑝, which is the displacement following its own internal
algorithm.

The imposition of a prescribed displacement Δ𝐑𝑝 on the host algo-
rithm is achieved by modifying the properties {𝐪(𝑖)} → {𝐪𝑚𝑜𝑑 (𝑖)}, such
that the calculation of Δ𝐑({𝐪𝑚𝑜𝑑 (𝑖)}) in the host algorithm returns Δ𝐑𝑝.
In other words, the properties {𝐪𝑚𝑜𝑑 (𝑖)} need to be such that the appli-
cation of 𝐹 (Algorithm 1 line 4) returns the prescribed displacement,
𝐹 ({𝐪𝑚𝑜𝑑 (𝑖)}) = Δ𝐑𝑝. In order to obtain the proper {𝐪𝑚𝑜𝑑 (𝑖)}, we define
a function 𝐺, to be called before 𝐹 , as:

𝐺 ∶ Δ𝐑𝑝 → {𝐪𝑚𝑜𝑑 (𝑖)}, (4)

which returns the set of modified properties {𝐪𝑚𝑜𝑑 (𝑖)}, given an input
Δ𝐑𝑝, such that the subsequent 𝐹 ({𝐪𝑚𝑜𝑑 (𝑖)}) = Δ𝐑𝑝. Function 𝐺 can be
seen as an inverse of 𝐹 , 𝐺 ∼ 𝐹−1. The function 𝐺 is applied at the end of
the re-purposing scheme to convert a displacement Δ𝐑𝑝 prescribed by
the internal algorithm into a set of instantaneous properties {𝐪𝑚𝑜𝑑 (𝑖)},
such that the move performed by the host algorithm (application of 𝐹)
corresponds to Δ𝐑({𝐪𝑚𝑜𝑑 (𝑖)}) = Δ𝐑𝑝. See also Fig. 1 for a schematic
representation. The instantaneous properties {𝐪(𝑖)} can be modified in
different ways:

a) trivially, no modification: {𝐪𝑚𝑜𝑑 (𝑖)} = {𝐪(𝑖)}, the resulting displace-
ment will be done according to the host integrator algorithm’s own
logic;

b) complete overwrite: {𝐪𝑚𝑜𝑑 (𝑖)} = {𝐪𝑢}, where {𝐪𝑢} are such that
𝐹 ({𝐪𝑢}) = Δ𝐑𝑝 is a displacement prescribed by the re-purposing
function;

c) partial bias: {𝐪𝑚𝑜𝑑 (𝑖)} = {𝐪𝑚𝑜𝑑 ({𝐪(𝑖)})}, the modification of the
properties, and thus displacement, depends on the current “state”
of the properties {𝐪(𝑖)}.

The “bias and re-purpose” concept described above achieves its goal

by only modifying the instantaneous properties of the system. As such,

M. Poberznik, M. Gunde, N. Salles et al.

Fig. 1. Schematic representation of the interaction between the pARTn library
and the host algorithm. The library receives the calculated properties {𝑞(𝑖)},
and returns modified properties {𝑞𝑚𝑜𝑑 (𝑖)} that depend on the current stage/step
of the ARTn saddle point search such that the computed Δ𝐑 is equal to the
wanted Δ𝐑𝑝 .

it is robust with respect to changes in the implementation of the host
algorithm. By carefully controlling a series of such manoeuvres, the
effect of the host algorithm/integrator can be completely overwritten
by another algorithm, without requiring extended knowledge on the
specific E/F engine implementation details.

3. Biasing the FIRE algorithm

The FIRE (Fast Inertial Relaxation Engine) algorithm [2,13] is an
efficient relaxation algorithm (minimization of energy), which is im-
plemented in most of the E/F engines. It uses the forces and velocities
computed from a molecular dynamics integration step, to constrain the
update of the atomic positions and to steer the dynamics of the structure
towards a minimum. The molecular dynamics integration can follow
different schemes and in the case of FIRE, the semi-implicit Euler in-
tegration scheme has been shown to be one of the most robust [13].
Hence, we chose to utilize the FIRE algorithm employing that integra-
tion scheme, and in the following we discuss how the corresponding
implementation is biased and re-purposed.

The atomic positions in the FIRE scheme are updated in each step
with Δ𝐑 = 𝐯eff (𝑖)Δ𝑡:

𝐑(𝑖+ 1) =𝐑(𝑖) + 𝐯eff (𝑖)Δ𝑡, (5)

where the effective velocities 𝐯eff (𝑖) are given by the modified instanta-
neous velocities 𝐯(𝑖), and instantaneous forces 𝐅(𝑖), as:

𝐯eff (𝑖+ 1) = 𝐯(𝑖) + 𝐅(𝑖)
𝑚

Δ𝑡, (6)

and the 𝐯(𝑖) are computed in a mixing scheme of instantaneous veloci-
ties 𝐯(𝑖) and forces 𝐅(𝑖), such that:

𝐯(𝑖) = (1 − 𝛼)𝐯(𝑖) + 𝛼𝐅(𝑖) ||𝐯(𝑖)||||𝐅(𝑖)|| , (7)

where 𝛼 is a mixing factor. The specificity of FIRE is the use of a dot
product between the forces and velocities 𝑃 = 𝐅 ⋅ 𝐯, which determines
the behaviour of the timestep Δ𝑡, and the mixing factor 𝛼. If 𝑃 > 0 for
a specified number of sequential steps, then Δ𝑡 is increased, else Δ𝑡 is
decreased and 𝐯 are set to zero. Conversely, if 𝑃 > 0, then 𝛼 is decreased
by multiplying it with a factor, else 𝛼 is reset to its original value 𝛼0.

As it can be observed in Eq. (5), the effective Δ𝐑 of the FIRE scheme
is given by Δ𝐑 = 𝐯eff (𝑖)Δ𝑡, which is computed directly from the instan-
taneous force 𝐅(𝑖) (in Eq. (6) and (7)), instantaneous velocity 𝐯(𝑖) (in
Eq. (7)), and the mixing factor 𝛼 (in Eq. (7)). Additionally, the timestep
Δ𝑡 is modified by FIRE itself. In the spirit of the function 𝐹 from Eq. (3),
the FIRE scheme can be written as

𝐹𝐹𝐼𝑅𝐸 ∶ {𝐪𝐹𝐼𝑅𝐸 (𝑡)}→Δ𝐑 (8)
3

where {𝐪𝐹𝐼𝑅𝐸 (𝑖)} = {𝐅(𝑖), 𝐯(𝑖), 𝛼, Δ𝑡}.
Computer Physics Communications 295 (2024) 108961

Thus, biasing the FIRE scheme is done by accessing and modify-
ing these four instantaneous properties through a call to an external
function, before inputting them to FIRE. This can be seen as the appli-
cation of function 𝐹𝐹𝐼𝑅𝐸 with the properties {𝐪𝑚𝑜𝑑 (𝑖)} given from the
re-purposing function (𝐺).

If we set the function 𝐺 such that the velocities 𝐯(𝑖) = 0 and the
mixing factor 𝛼 = 0, the mixing scheme in Eq. (7) vanishes, and the
function 𝐹𝐹𝐼𝑅𝐸 depends only on the force 𝐅(𝑖), and timestep Δ𝑡.

𝐹𝐹𝐼𝑅𝐸 (𝐅(𝑖),Δ𝑡) = Δ𝐑 = 𝐅(𝑖)
𝑚

Δ𝑡Δ𝑡 (9)

From the expression of Eq. (9) we can construct the function 𝐺, as fol-
lows. Given a prescribed displacement Δ𝐑𝑝, the modified instantaneous
properties are set by:

𝐺(Δ𝐑𝑝) = {𝐪𝑚𝑜𝑑 (𝑖)} =

⎧⎪⎪⎨⎪⎪⎩

𝐅𝑚𝑜𝑑 (𝑖) = Δ𝐑𝑝𝑚∕Δ𝑡2

𝐯𝑚𝑜𝑑 (𝑖) = 0
Δ𝑡𝑚𝑜𝑑 =Δ𝑡
𝛼𝑚𝑜𝑑 = 0

(10)

The function 𝐺 from Eq. (10) is executed in the function applying exter-
nal conditions on the system, which modifies the instantaneous proper-
ties. The displacement Δ𝐑 computed by FIRE afterwards becomes equal
to the prescribed displacement Δ𝐑𝑝,

𝐹𝐹𝐼𝑅𝐸 ({𝐪𝑚𝑜𝑑 (𝑖)}) = 𝐯𝑒𝑓𝑓 (𝑖)Δ𝑡 =
𝐅𝑚𝑜𝑑 (𝑖)

𝑚
Δ𝑡Δ𝑡 =Δ𝐑𝑝 (11)

and the atomic positions in Eq. (1) are updated as desired, 𝐑(𝑖 + 1) =
𝐑(𝑖) +Δ𝐑𝑝.

In this way, the FIRE algorithm is successfully biased and re-
purposed by modifying the instantaneous properties, which are all in-
ternal to the main integration algorithm itself, and can thus be accessed
and modified by an external function called right after their computa-
tion.

4. The ARTn algorithm

The ARTn algorithm itself is organised into different stages. It spec-
ifies a series of atomic displacements, or pushes, that aim to bring the
structure from a local minimum to a connected saddle point of the po-
tential energy surface (PES). Each displacement of the atoms is followed
by a (partial) minimization, constrained into the hyperplane perpen-
dicular to the displacement of the atoms. ARTn can be described as a
succession of macro steps, each containing three internal actions:

1. choose the push direction;
2. push the system in that direction;
3. relax in the hyperplane perpendicular to the push direction.

Depending on which point of the PES the system is at, the push di-
rection can be either: (i) the direction of the eigenvector corresponding
to the lowest eigenvalue of the Hessian matrix or (ii) a random vector
chosen at the beginning of the exploration. The exploration generally
starts with the latter and the switch to the eigenvector direction hap-
pens once the lowest eigenvalue of the Hessian is negative, or lower
than a prescribed threshold.

Each push is followed by relaxations in the perpendicular hyper-
plane. In the basin, this step prevents collisions after successive pushes,
whereas outside it ensures convergence to a saddle point.

When the structure has converged to a saddle point, which is char-
acterised by zero forces and a negative lowest eigenvalue, it is pushed
into the +/- directions of the corresponding eigenvector and allowed to
relax without constraints. In this way, ARTn finds a saddle point and the
two minima connecting it. The lowest eigenvalue, and the correspond-
ing eigenvector of the Hessian matrix, are computed by the Lanczos

algorithm [16]. More details on ARTn can be found in Refs. [5,9,17].

M. Poberznik, M. Gunde, N. Salles et al.

4.1. Lanczos applied to the Hessian matrix

The Lanczos diagonalization algorithm [16] is an iterative algorithm
that finds the extremum eigenvalues and eigenvectors of some matrix
𝐴, by only knowing the matrix-vector products 𝐴 |𝑥𝑖⟩, where |𝑥𝑖⟩ are
vectors generated by the Lanczos algorithm. More complete details on
the algorithm can be found in the literature, see for example Appendix B
in Ref. [17], or Section IIA in Ref. [18]. Most importantly, each step 𝑖 of
the Lanczos algorithm generates the next Lanczos vector |𝑥𝑖+1⟩, which
is computed from the previous Lanczos vectors {|𝑥𝑖⟩}, such that:

|𝑥𝑖+1⟩ =𝐴 |𝑥𝑖⟩− 𝛼𝑖 |𝑥𝑖⟩− 𝛽𝑖−1 |𝑥𝑖−1⟩−
𝑖∑

𝑗=0
⟨𝑥𝑖+1|𝑥𝑗⟩ |𝑥𝑗⟩ (12)

The first term in Eq. (12) is the matrix-vector product 𝐴 |𝑥𝑖⟩, while all
the other terms are computed from the previous Lanczos vectors {|𝑥⟩𝑖},
as well as the coefficients 𝛼𝑖 and 𝛽𝑖, which are computed at each step
of the iteration and stored in a special tridiagonal matrix. The previous
Lanczos vectors, and the tridiagonal matrix of 𝛼 and 𝛽 coefficients, are
internal to the Lanczos procedure.

When the Lanczos algorithm is applied to the diagonalization of
the Hessian matrix (𝐻), the products 𝐴 |𝑥𝑖⟩ can be thought of as
𝐻(𝐑0 + Δ𝐑𝑖) = −𝐅𝑖, which can be computed by the E/F engine, with-
out knowing any elements of the 𝐻 matrix. Before entering the first
step of the Lanczos procedure (Lanczos step 𝑖 = 0), the reference force
𝐅0 is calculated for the starting positions 𝐑0 and kept in memory. The
Lanczos vectors generated by Eq. (12) are then made to correspond to
displacements |𝑥𝑖+1⟩ = Δ𝐑𝑖+1, and the matrix-vector products are then
𝐴 |𝑥𝑖+1⟩ = 𝐻Δ𝐑𝑖+1 = −Δ𝐅𝑖+1. Because every Δ𝐑𝑖 uses the starting po-
sitions 𝐑0 as the origin, the displacement vector which we specify is
modified by subtracting the current displacement Δ𝐑′

𝑖+1 = Δ𝐑𝑖+1 −Δ𝐑𝑖,
thereby ensuring the structure moves from (𝐑0 + Δ𝐑𝑖) to (𝐑0 + Δ𝐑𝑖+1)
in a single step. After the Lanczos algorithm converges in 𝑛 steps, the
structure needs to return to the starting position 𝐑0, which is achieved
by setting the displacement Δ𝐑𝑛+1 = −Δ𝐑𝑛.

5. Repurposing FIRE to deliver ARTn

The taking over of the FIRE minimization algorithm by the ARTn al-
gorithm using the concepts described in Sec. 3 and Sec. 4 is schematised
in Fig. 1. The contact point between the two algorithms is in the call
to the function applying the “external conditions”. This function per-
forms two actions. First, it determines the stage of the ARTn algorithm,
and computes the displacement Δ𝐑𝑝 according to ARTn. Second, the
displacement Δ𝐑𝑝 is passed to the function 𝐺, which converts it into a
set of modified instantaneous properties {𝐪𝑚𝑜𝑑 (𝑖)}. After the call to the
“external conditions” function, the properties {𝐪(𝑖)} = {𝐪𝑚𝑜𝑑 (𝑖)} are such
that the subsequent displacement performed by the host algorithm FIRE
is exactly as the one prescribed by the ARTn algorithm.

Depending on the current stage of the ARTn algorithm, there are
three types of displacements that can be done, which correspond to the
three ways that instantaneous properties {𝐪(𝑖)} might be modified (see
the list in Sec. 2). No modification to {𝐪(𝑖)} from point a) is done when
allowing the system to relax from the identified saddle point. A com-
plete overwrite {𝐪(𝑖)} = {𝐪𝑢(𝑖)} from point b) is done when the system
needs to be displaced with a specific known Δ𝐑𝑝, which is the case
when pushing with a given vector, and during the Lanczos iterations.
Partial biasing of {𝐪(𝑖)} from point c) is done when the system under-
goes the perpendicular relaxation, since, in this case, {𝐪(𝑖)} are modified
by removing only the components parallel to the push vector.

5.1. Achieving specific displacements for ARTn

Corresponding to the three types of displacements in ARTn, we de-
fine three biasing functions, 𝐺𝑠𝑝𝑒𝑐 , 𝐺𝑝𝑒𝑟𝑝, and 𝐺𝑟𝑙𝑥. They are as follows.

For the actions of pushing in a specific direction, and during the
4

Lanczos iterations, the specific Δ𝐑𝑝 are prescribed by ARTn and Lanczos
Computer Physics Communications 295 (2024) 108961

algorithms, respectively. We define the biasing function 𝐺𝑠𝑝𝑒𝑐(Δ𝐑𝑝),
which returns the set {𝐪𝑚𝑜𝑑 (𝑖)} as:

𝐺𝑠𝑝𝑒𝑐(Δ𝐑𝑝) =

⎧⎪⎪⎨⎪⎪⎩

𝐅𝑚𝑜𝑑 (𝑖) = Δ𝐑𝑝𝑚∕Δ𝑡2

𝐯𝑚𝑜𝑑 (𝑖) = 0
Δ𝑡𝑚𝑜𝑑 =Δ𝑡
𝛼𝑚𝑜𝑑 = 0

(13)

For the action of relaxation perpendicular to the push direction, the
specific Δ𝐑 is a function of the instantaneous properties along that spe-
cific direction. We define 𝐺𝑝𝑒𝑟𝑝 which removes the components of the
force and velocity, and leaves other properties unmodified.

𝐺𝑝𝑒𝑟𝑝 =

⎧⎪⎪⎨⎪⎪⎩

𝐅𝑚𝑜𝑑 (𝑖) = 𝐅⟂(𝑖)
𝐯𝑚𝑜𝑑 (𝑖) = 𝐯⟂(𝑖)
𝛼𝑚𝑜𝑑 = 𝛼

Δ𝑡𝑚𝑜𝑑 =Δ𝑡

(14)

At each first step of the perpendicular relaxation, we set 𝐯(𝑖) = 0 and
reset the values 𝛼 = 𝛼0, and Δ𝑡 =Δ𝑡0. For all further steps of the perpen-
dicular relaxation, 𝐺𝑝𝑒𝑟𝑝 is applied.

For the action of normal relaxation, the function 𝐺𝑟𝑙𝑥 has no effect
on any {𝐪(𝑖)}, except for the first step of the relaxation, where we reset
the values 𝛼 = 𝛼0, and Δ𝑡 =Δ𝑡0.

5.2. Algorithm control with flags and counters

The pARTn algorithm is thus composed of three biasing functions
𝐺, as given in Sec. 5.1. In order to control exactly which part of the
ARTn algorithm is executed at each call to the plugin function, and
which of the 𝐺 functions is used to bias FIRE, we introduce counters
and flags, which specify the current stage of the ARTn algorithm. For a
more precise control, each stage specified by a logical flag also has one
or more associated counters.

6. Implementation details

The plugin pARTn consists of three main subroutines, artn(),
move_mode(), and clean_artn() (see the three orange blocks in
Fig. 2). The data received from the host algorithm enter into artn(),
which contains the ARTn algorithm, and produce a displacement vec-
tor Δ𝐑𝑝, in the variable displ_vec. This displacement vector enters in
the move_mode() subroutine, where the biasing functions 𝐺 are imple-
mented, and data that get communicated back to the host algorithm are
generated. Finally, the clean_artn() subroutine is there to cleanly
stop the calculation by the engine.

In addition to the three main subroutines, the pARTn library also
consists of two modules. The artn_params module, which contains
the global variables used by ARTn, such as flags and counters, to keep
track of the step/stage in the saddle point search, and the units mod-
ule which contains the units employed by the different engines.

The rest of this section describes the three main subroutines from
Fig. 2 in greater detail.

6.1. The artn() routine

The ARTn algorithm is contained within this subroutine, reorga-
nized to fit the “bias and re-purpose” paradigm. This means that the
subroutine is designed to be called after each calculation of the instan-
taneous properties, made by the host algorithm/engine, and to prescribe
the subsequent ARTn step. The stage of ARTn is thus incremented each
time the routine artn() is entered.

The core of the subroutine is divided into computational blocks;
each of them corresponding to a different stage of the ARTn algorithm,

and associated to a logical flag marked as lblock, as summarised in

M. Poberznik, M. Gunde, N. Salles et al.

Fig. 2. The organization of the three main subroutines of the pARTn library.
The artn() subroutine receives the instantaneous properties from the host,
checks convergence, determines the current stage, generates and communicates
the displacement Δ𝐑𝑝 to the move_mode() subroutine. The latter converts it
into a set of appropriately modified properties, and passes it back to the host.
The clean_artn() subroutine is responsible for stopping the calculation and
resetting the counters/flags. (For interpretation of the colours in the figure(s),
the reader is referred to the web version of this article.)

Fig. 2. Each block can perform as a maximum number of iterations,
nblock as controlled by an iterator iblock.

The saddle point search is decomposed into four blocks: linit,
lperp, leigen, and llanczos. The linit and leigen blocks are
responsible for displacing the configuration following either the initial
push vector or the eigenvector, respectively. They both produce a spe-
cific Δ𝐑𝑝 displacement vector in accordance to the ARTn algorithm,
such that the subsequent configuration is precisely 𝐑(𝑖 +1) =𝐑(𝑖) +Δ𝐑𝑝.
The lperp block controls the relaxation in the hyperplane perpendicu-
lar to the push direction, this block does not generate any displacement
vector, displ_vec, which is left to the FIRE relaxation scheme, but,
rather, reduces the minimization space in {𝐪(𝑖)} by removing one di-
mension, see Eq. (14). The llanczos block controls the computation
of the lowest eigenvalue and eigenvector with the Lanczos algorithm. It
produces a specific displacement Δ𝐑𝑝 according to the Lanczos scheme
(see Section 4.1).

Upon first entering the artn() routine (step = 0, Fig. 2 top
left), the input parameters are read (setup_artn()), and the ini-
tial displacement either read from a file, or generated on the fly
(start_guess()). If a restart was requested, the restart file is read
and the calculation parameters updated accordingly (restart()). The
appropriate block flags are switched on/off, according to the updated
parameters.

In the subsequent steps (step > 0, Fig. 2 top right), the artn()
subroutine first checks whether the current stage has reached conver-
gence (check_force()), or if the maximum number of iterations of
the current block has been reached. Depending on the outcome, the
block flags linit, lperp, leigen, and llanczos are switched on/off
according to what should happen next in the ARTn algorithm. When
the total force is lower than the target threshold (i.e. the saddle point is
reached), the saddle configuration is saved. Subsequently, lpush_over
is set to .true. and the corresponding block is executed, displacing the
5

atoms beyond the saddle point. Following this displacement, a simple
Computer Physics Communications 295 (2024) 108961

relaxation (lrelax) is performed to reach an adjacent minimum. The
push_over and relax blocks are repeated twice, once for each +/-
sign of the push vector to obtain two minima connected to the saddle
point.

6.2. The move_mode() routine

The routine move_mode() is responsible for transforming the dis-
placement vector Δ𝐑𝑝 in variable displ_vec that is generated in the
artn() routine, into appropriately modified data, {𝐪} → {𝐪𝑚𝑜𝑑}, to be
sent back to the host algorithm. Currently, the routine is written specif-
ically for the case of biasing and re-purposing the FIRE minimization
algorithm. Depending on the stage of the ARTn algorithm, the data
{𝐪𝑚𝑜𝑑} that are sent from move_mode() to the host algorithm corre-
spond to one of the actions described in Sec. 5.1.

The choice of which action must be performed, or which of the bi-
asing functions 𝐺 must be applied (𝐺𝑠𝑝𝑒𝑐 , 𝐺𝑝𝑒𝑟𝑝, or 𝐺𝑟𝑙𝑥), is made based
on the values of the block flags decided in the artn() routine. The
function 𝐺𝑠𝑝𝑒𝑐 (Eq. (13)) is applied when either of the flags linit,
leigen, llanczos, or lpush_over are turned on. The function 𝐺𝑝𝑒𝑟𝑝

(Eq. (14)) is applied when the flag lperp is turned on. And the function
𝐺𝑟𝑙𝑥, which has no action, is applied when the flag lrelax is turned
on. The resulting set of modified properties {𝐪𝑚𝑜𝑑} is sent back to the
host algorithm.

If an alternative host algorithm to FIRE is to be overwritten with
pARTn, only the move_mode routine needs to be edited, in accordance
with the new host algorithm.

6.3. The clean_artn() routine

This procedure is called when the algorithm has converged (lconv)
or has been interrupted for any reason. It ensures that all variables/pa-
rameters of ARTn are reset, and ready to start a new saddle point search.
All flags except linit are turned off, and the iterators (iblock) are
set to zero.

When performing a series of ARTn searches, the initial atomic con-
figuration is loaded in the actual engine position array at the start of
each new ARTn research by default.

7. API and engine-specific interface

Due to the fact that E/F engines can be written in different program-
ming languages, and because the specifics of the implementation of the
host algorithm can depend on the E/F engine, an interface specific to
the engine is needed.

In general, the artn() subroutine requires the energy/force, as well
as atomic positions from the engine, and it needs to be able to modify
these parameters. It also requires the total number of atoms, the order
of atomic indices – which can vary among E/F engines, and the informa-
tion on positional constraints specified by the user. The move_mode()
subroutine needs to be able to modify the parameters of the host algo-
rithm, which in the case of FIRE means having the knowledge of the
initial mixing parameter (𝛼0) and of the initial time step (Δ𝑡0). It also
needs to be able to modify 𝛼 and Δ𝑡 on the fly.

Apart from these considerations, it should be noted that engines
employ different units. To this end, a units module and a variable
engine_units have been defined, which ensure that the units are
converted to the internal units of the plugin upon input, and converted
back to the units of the engine upon output. Therefore, to build an in-
terface for the E/F engine of choice, one needs to add a case for the
specific engine and define the unit conversions in this module.

This section explains how to construct an interface for two engines:
(i) the Quantum ESPRESSO package for electronic structure calcula-
tions, which is based on Density Functional Theory (DFT) employing a
plane wave basis set and is written in modern FORTRAN, and (ii) the

LAMMPS package for Molecular Dynamics simulations using empirical

M. Poberznik, M. Gunde, N. Salles et al.

interatomic potentials, which is written in C++. Integration into any
other engine would follow similar steps.

7.1. Quantum ESPRESSO interface

QE [19] is written in Modern FORTRAN and consists of differ-
ent packages. The main package is PWscf (executable called pw.x)
which computes the total energy and force of a given configuration us-
ing a Density Functional Theory (DFT) based self-consistent field (scf)
approach. Since several years PWscf includes an empty subroutine
(plugin_ext_forces), which is called after the energy/force calcu-
lation, that enables modifications of the instantaneous properties.

In order to utilize and re-purpose the integrator algorithm, the in-
terface subroutine of pARTn (artn_QE) is placed within this empty QE
subroutine (section 8.1), where it modifies the calculated properties of
the current configuration in accordance with the requirements of the
ARTn algorithm. The general structure of the QE interface subroutine is
summarised in Algorithm 2.

Algorithm 2: Algorithm of pARTn interface with Quantum
ESPRESSO.
1 SUBROUTINE artn_qe

Input: 𝐅, 𝐯, 𝐑, force_threshold, energy, fire_dt, fire_𝛼, alat, lattice, nat, type,
step, if_pos, atm, tmp_dir_qe, prefix_qe

Output: 𝐅, 𝐯, 𝐑, epsf_qe,lconv

2 !> Note: Convert QE Parameters
3 box← box* alat
4 𝐑← 𝐑* alat
5 order = [1, 2, ..., 𝑁at]

6 !> The artn subroutine outputs Δ𝐑𝑝

7 CALL artn(𝐅, 𝐯, 𝐑, box, type, 𝐨𝐫𝐝𝐞𝐫, Δ𝐑𝑝 , lconv)

8 !> Adjust QE threshold to ARTn one
9 if (epsf_qe ≠ forc_thr) then

10 epsf_qe ← forc_thr
11 end

12 !> Note: Unconvert the position
13 𝐑← 𝐑/ alat
14 !> Note: Read FIRE Parameters
15 READ(FIREfile,*) 𝐸tot , nsteppos, dt_curr, 𝛼
16 !> The move_mode subroutine outputs 𝐺(Δ𝐑𝑝)

17 CALL move_mode(𝐅, 𝐯, 𝐑, 𝐸tot , nsteppos, dt_curr, 𝛼 , Δ𝐑𝑝)

18 if (lconv) then

19 CALL clean_artn()
20 end

21 !> Note: Write FIRE parameters
22 WRITE(FIREfile,*) 𝐸tot , nsteppos, dt_curr, 𝛼

QE implements several parallelisation and optimisation strategies.
Since the majority of the computational time is spent for the calcula-
tion of the scf ground-state charge density, the displacement of atoms
(update of atomic positions) is performed only by a single core. Simi-
larly the pARTn routines are meant to be called by a single mpi instance,
i.e., pARTn routines do not contain any mpi/openmp instruction. The
internal units of QE are atomic units (Ry, bohr, a.u.t.). However, the
atomic positions and lattice parameters are internally stored in atomic
units scaled by a lattice parameter (alat). Therefore the first step of
the artn_QE() interface subroutine is to convert the positions and lat-
tice parameters back to atomic units, and define the order of atomic
indexes that follows the order in the arrays, see Algorithm 2, lines
3, 4, and 5. After this pre-processing, all parameters are given to the
artn() subroutine (Algorithm 2 line 7) which generates the displace-
ment Δ𝐑𝑝 according to ARTn algorithm. The displacement is then used
as input for the move_mode() subroutine (Algorithm 2 line 17) which
computes 𝐺(Δ𝐑𝑝) = {𝐪𝑚𝑜𝑑 (𝑖)} for the current step, as described in Sec-
tion 5.1. The force threshold of QE, epsf_qe, is modified to control the
convergence of host algorithm. QE keeps track of the FIRE parameters
6

by writing them to a file at each step, so that file is read before calling
Computer Physics Communications 295 (2024) 108961

the move_mode() subroutine, and the modifications are written to it
afterwards (Algorithm 2 lines 15 and 22).

Finally, the clean_artn() subroutine is called (Algorithm 2 line
19) when the lconv flag is activated by the artn() subroutine, which
resets all the parameters of the saddle point search to their original
values.

7.2. LAMMPS interface

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simula-
tor) [15] is a package that performs molecular dynamics using empirical
interatomic potentials and is written in C++. It contains an extensive
library of different empirical interatomic potentials and implements a
variety of minimization algorithms, including FIRE. Additionally it can
easily be customized through to the activation of classes under the la-
bel Fix, which enable changing the rules of the simulated system, or to
add some external constraints. For instance the thermodynamic ensem-
ble of molecular dynamic can be changed by employing child classes of
Fix class (Class FixNVE, Class FixNPT, ...).

Algorithm 3: Header declaration of the FixARTn class in
LAMMPS.
class FixARTn : public Fix {

public:

FixARTn(class LAMMPS *, int, char **);

virtual ~FixARTn();

int setmask();

virtual void init();

void min_setup(int);

void min_post_force(int);

void post_run();

Protected:...

};

A Fix can be inserted in many places in the code, including just
before the integration step. The pARTn interface for LAMMPS is a
child class of Fix, designed to be placed in the “post force” position
(FixARTn::setmask()). The FIRE algorithm in LAMMPS is a child
class of the min class.

The class FixARTn (see Algorithm 3 for the header declaration)
consists of three routines, (i) the routine FixARTn::min_setup(),
which is used to initialize the FIRE parameters, and to modify the en-
ergy and force tolerance of the minimization as required by the ARTn
algorithm. (ii) the main routine FixARTn::min_post_force(), in
which the calls to the artn_() and move_mode_() subroutines are
placed, see Algorithm 4; and (iii) the routine FixARTn::post_run(),
which is called after convergence of the min procedure, and executes
clean_artn_();

The routine FixARTn::min_post_force() is called each time
the energy and force are computed by the routine MIN::energy_
force(). The particularity of the implementation of the FIRE algo-
rithm in LAMMPS [13] is that the MIN::energy_force() can be
called twice for one atomic position integration iteration, depending
on the sign of the dot product of the force and the velocity (param-
eter 𝑃 = 𝐕.𝐅 of FIRE). Due to this setup, the ARTn algorithm can-
not be incremented each time the MIN::energy_force() routine
is called. To manage and anticipate this behaviour, the scalar prod-
uct 𝑃 is explicitly calculated, the modified forces vector 𝐅 returned
by ARTn is saved from one iteration/call to another in 𝐅𝐩𝐫𝐞𝐯, and re-
loaded into 𝐅 when 𝑃 is negative. So at the beginning of the routine
FixARTn::min_post_force(), the parameter 𝑃 is explicitly com-
puted (Algorithm 4 line 4), and if 𝑃 is negative, 𝐅 = 𝐅𝐩𝐫𝐞𝐯 and returned
to the calling function, otherwise it enters in the ARTn procedure. At the
end of the routine FixARTn::min_post_force() the returned force
is saved, 𝐅𝐩𝐫𝐞𝐯 = 𝐅. To work with both serial and parallel applications,
the algorithm starts by collecting the data distributed among proces-

sors, due to MPI paradigm, in arrays (Collect_array()), as well as

M. Poberznik, M. Gunde, N. Salles et al.

Algorithm 4: Change the force post force calculation.

1 void FixARTn::min_post_force(int*)
Input: vflag

2 !> Local reorder of Arrays
3 order_arrays(𝐅, 𝐯, 𝐑, order, type);

4 Compute 𝐕.𝐅 ;
5 if (𝐕.𝐅 ≤ 0 && step > 1 && nextblank) then

6 𝐅 ← 𝐅𝑝𝑟𝑒𝑣 ;
7 nextblank = false;
8 return;

9 !> Note: Prepare Arrays
10 Collect_array(𝐅, 𝐯, 𝐑, type, order);

11 artn_(𝐅, 𝐯, 𝐑, box, type, 𝐨𝐫𝐝𝐞𝐫, DISP, Δ𝐑𝑝 , lconv) ;
12 move_mode_(𝐅, 𝐯, 𝐑, 𝐸tot , nsteppos, dt_curr, 𝛼 , Δ𝐑𝑝);

13 !> Spread the Arrays
14 Spread_Arrays(𝐅, 𝐯, 𝐑, type, order);

15 if (lconv) then

16 !> Note: initial LAMMPS force threshold convergence
17 return;

18 !> Change FIRE parameters
19 if (DISP == ’perp’ && iperp == 1) OR

20 (DISP=’relx’ && irelx == 1) OR

21 (DISP!=’perp’ && DISP!=’relx’) then

22 min.modify_params();
23 min.init();
24 end

25 Compute 𝐕.𝐅;
26 if (𝐕.𝐅 ≤ 0) then

27 nextblank = true;
28 if (step == 0) then

29 nextblank = false;
30 𝐅𝑝𝑟𝑒𝑣 ← 𝐅;
31 return

the internal order of atoms in LAMMPS. The order of atoms in LAMMPS
arrays can change due to the distribution of data over the processors in
parallel execution, however the pARTn library is executed serially. The
forces and velocities of all atoms, along with the order of indexes, are
collected and given to artn_(), followed by move_mode_(). After-
wards, the new vectors of force and velocity are spread through all the
processors (Spread_arrays()). If convergence is reached (lconv)
then the interface returns to the calling function. Otherwise the FIRE
parameters are updated according to the specific step of ARTn described
by variable DISP.

7.3. Summary for the building of an interface

The two presented interface examples showcase the organisation of
calls to the three main routines of pARTn, i.e., artn(), move_mode(),
and clean_artn(). In general, an interface should contain a step in
which the arrays that get passed to artn() and move_mode() are or-
ganised in accordance with their requirements. Originally these arrays
can be in any engine-specific format, which can be due to the distri-
bution of data between processors in MPI paradigm, or other specific
engine data management. After these arrays are used by pARTn, an ad-
ditional step is needed, where they are converted back to the format
required by the engine. A call to the routine clean_artn() at the end
ensures that the saddle point search is stopped correctly, and the ARTn
variables, flags, and counters are reset for a new search.

8. Package description and documentation

The pARTn library package contains the following directories and
building files:
7

• src/ (folder): containing the source code of the library;
Computer Physics Communications 295 (2024) 108961

• Files_LAMMPS/ (folder): containing the files and scripts to
interface ARTn with LAMMPS;

• Files_QE/ (folder): containing the files and script to inter-
face ARTn with Quantum ESPRESSO;

• examples/ (folder): examples of saddle point searches us-
ing QE and LAMMPS;

• environment_variables (file): File defining the envi-
ronmental variables;

• Makefile (file): Contains compilation instructions using
the make command;

• README.md (file): Contain a description and compilation in-
structions for both interfaces.

• TERMS_OF_USE (file)
• Textual copy of the License

The online documentation with further details is available at the
link: https://mammasmias .gitlab .io /artn -plugin/.

8.1. Quick installation guide

8.1.1. Compile pARTn

The ARTn-plugin-v1.0.0.tar.gz package can be obtained either from
the journal repository, or from the pARTn git repository.1 To com-
pile pARTn, specific variables must be configured in the environ-
ment_variables file. These variables include the names of the com-
pilers (F90, C, and C++ compilers defined in F90, CC, and CXX, respec-
tively), the corresponding run command (PARA_PREFIX) if required,
the paths to the E/F engine(s) (Quantum-ESPRESSO and/or LAMMPS
main directory), and the BLAS library path. It is essential to use the
same compiler that was used to compile the engine, due to the shared li-
brary interface between the engine and pARTn library. The main pARTn
directory contains a Makefile, and all available make options can be dis-
played by typing the appropriate command.

make [help]

with or without the argument help.

8.1.2. pARTn for Quantum ESPRESSO

In the following, a quick Quantum ESPRESSO 7.0 installation guide
is provided, followed by instructions on how to patch QE with pARTn.
For more specific QE installation instructions, please refer to the QE
documentation. Download Quantum ESPRESSO 7.0 from the QE web
site (www .quantum -espresso .org). Untar and unzip. In the Quantum
ESPRESSO main directory type:

./configure
make pw

In the pARTn main directory the command

make lib

will compile libpart.a, which is the library needed for the QE/pARTn
interface.

make patch-qe

will patch and recompile Quantum ESPRESSO with the libpart.a
dependency.

A calculation invoking pARTn can be run by using the flag -partn
as argument of pw.x:

mpirun -np N pw.x -partn -inp input.qe
1 https://gitlab .com /mammasmias /artn -plugin /-/releases.

https://mammasmias.gitlab.io/artn-plugin/
http://www.quantum-espresso.org
https://gitlab.com/mammasmias/artn-plugin/-/releases

M. Poberznik, M. Gunde, N. Salles et al.

Note that patches have been tested ONLY for Quantum ESPRESSO
7.0, which is the first version implementing FIRE. For patching pARTn
on other QE versions, please contact us.

8.1.3. QE input specification

For a proper execution of pARTn within QE, three variables must
be specified in the QE input file, namely: in the CONTROL namelist, the
calculation type must be specified as calculation = “relax”, and
the use of symmetries disabled nosym = .true., and in the IONS
namelist, the dynamics must be specified as ion_dynamics=”fire”.

8.1.4. pARTn for LAMMPS

In the following a quick LAMMPS installation guide is described,
followed by instructions on how to compile pARTn as a shared library,
which is needed in order to behave as a LAMMPS plugin. For more
specific LAMMPS installation instructions please refer to the LAMMPS
documentation.

First a LAMMPS 23 june 2022 or a more recent version needs to be
downloaded from the official LAMMPS website (www .lammps .org). Un-
tar and unzip. Before compiling LAMMPS, the PLUGIN package needs
to be activated. In the directory LAMMPS/src/, type:

make yes-plugin

then LAMMPS compiled in the preferred way, using make, or CMake,
more info: https://docs .lammps .org /Build .html. For a standard X86
linux, typing

make mode=shared serial (or mpi)

from the src directory should work.
The LAMMPS/pARTn interface uses the shared library libartn.so,

that is built by the command

make sharelib

from the main pARTn directory.
Note that the compiler (CC or CXX) defined in the file environ-

ment_variables should be the same as the one used to compile
LAMMPS. As stated earlier, the PLUGIN package of LAMMPS needs to
be activated (make yes-plugin), which is available in LAMMPS since
the version stable_23Jun2022.

8.1.5. LAMMPS input specification

In the LAMMPS input script, the pARTn library passes through the
class plugin. The fix artn can be used only after loading the dy-
namic library libartn.so, as for example:

plugin load /path/to/pARTn/libartn.so
fix fix_ID all artn
min_style fire
minimize etol ftol maxiter maxeval

The fix artn must also be associated with the algorithm FIRE that is
defined by the min_style command.

8.1.6. delete_atoms and order in LAMMPS

It must be noted that the order array of atomic indexes which enter
pARTn must be contiguous, or more precisely, the maximal atomic in-
dex must correspond to the size of the array of the positions. Attention
when using the delete_atoms function of LAMMPS – the keyword
compress yes should also be used.

9. Input and output

9.1. I/O format

Along with the regular input/output file(s) from the E/F engine,
8

pARTn has its own human-readable input and output files, artn.in,
Computer Physics Communications 295 (2024) 108961

artn.out, and files containing the found saddle/minima configura-
tions.

The pARTn input file artn.in is formatted as a Fortran NAMELIST,
containing the input parameters of ARTn. The pARTn output file
artn.out contains precise data on the progress of the current saddle
point search. The files containing found saddle/minima configurations
are text files written in two possible formats, xsf or xyz, specified by
the input variable struc_format_out. The filenames of found con-
figurations are printed at the end of each ARTn research in the output
file artn.out. In order to not overwrite any of the configuration files
during an extensive exploration, counters are used as part of the con-
figuration filenames, with prefixes min or sad, depending on whether
the configuration has been found as a minimum, or saddle. For example
the filename sad0013 indicates the configuration written in the file is
a saddle point number 13.

9.2. Input description

The pARTn input file ‘artn.in’ is used to define/modify the ARTn
variables, which are presented in the Table 1. This file is read in the
initialization step of the artn() routine, specifically by the subroutine
setup_artn().

The parameters controlling the general behaviour of pARTn are
verbose, engine_units, lrestart, struc_format_out, and
converge_property. The verbosity of the output is controlled
by either value verbose={0,1,2} , where 0 is the least verbose.
The units of the E/F engine are specified through engine_units,
for instance engine_units=’qe’ when QE is used. The logical
flag lrestart=.true. can be set when a restart from a previ-
ous calculation is desired. There are two possibilities for setting up
the convergence criteria, converge_property=’maxval’ or con-
verge_property=’norm’, which decides whether the convergence
value is compared to the maximum value or to the total norm of the
property being checked for convergence (force).

Each block of the ARTn algorithm can be customised to some extent,
by modification of the relevant parameters in the input file.

9.2.1. Controlling the initial push

The initial push vector can be customised with the combination of
five parameters: push_mode, push_ids, add_const, push_step_
size, and dist_thr. The parameter push_mode specifies the way
to setup the initial push vector, and it has possible values all, list,
rad, or file. In the case push_mode=’all’, the initial push vector
is generated containing a push on all the atoms present in the sys-
tem; when push_mode=’list’ it is generated only for a list of atoms,
which needs to be provided as push_ids=id1,id2,... , where id#
are the indices of atoms where the push vector shall be nonzero.Doc-
tor In order to define a preferential direction for the initial random
push of the atoms, the parameter add_const can be used, for exam-
ple the command add_const(:,id1) = 1.0, 0.5, -1.0, 30.0
will constrain the push vector on the atom id1 to be generated within
a circular cone with the axis in the (1.0, 0.5, −1.0) direction, and the an-
gle 30 degrees from its apex, where the apex is the position of the atom.
The push_mode=’rad’ is used when a group of atoms within a radius
dist_thr of each atom specified in push_ids should have a nonzero
push vector. When the initial push vector should be read from a file,
the push_mode=’file’ is used, with the filename of the push vec-
tor provided in push_guess=filename.xyz specified. The norm of
the initial push vector is regulated by the push_step_size parame-
ter, except for when reading it from a file (push_mode=’file’) where
the vector is used as-is. The format of the xyz file is explained in Ap-
pendix A.

9.2.2. Controlling the number of pushes before calling Lanczos

The evaluation of the lowest eigenvalue with the Lanczos procedure

can consume a non-negligible portion of the computational time, due to

http://www.lammps.org
https://docs.lammps.org/Build.html

Computer Physics Communications 295 (2024) 108961M. Poberznik, M. Gunde, N. Salles et al.

Table 1

The input parameters of pARTn. Default values are in atomic units (lengths in bohr, energies in Ry, forces in Ry/bohr, and
eigenvalues in Ry/bohr2 .

name type default description

I/O and calculation options

verbose INT 0 3 levels of verbosity: {0,1,2};
engine_units CHAR ‘qe’ Units used by the engine:

“qe”: Rydberg, bohr, a.u.time; “lammps/metal”: eV, Å, ps;
struc_format_out CHAR ‘xsf’ Output structure format, xyz or xsf;
lrestart BOOL F Flag for restarting a search,

if set to T, the restart file (artn.restart) is read;
lpush_final BOOL T When T, relax to both minima adjacent to the saddle point;
lmove_nextmin BOOL F Reset the configuration to that of the final minimum

when the ARTn algorithm is finished;

Controlling initial push

push_mode CHAR ‘all’ Possible values are ‘all’, ‘list’, ‘rad’, or ‘file’;
push_ids INT(:) (id1,..,id𝑁) List of atom indices with nonzero components in

the initial push vector;
add_const REAL(4,:) 0.0 Constraint on the initial push on each atom:

3-component vector, and 1 solid angle in degrees;
dist_thr REAL 0.0 Generate push on all atoms within the radius from an

atom in push_ids, used in combination with push_mode = ‘rad’;
push_step_size REAL 0.3 Maximum size of a component in the initial displacement (Δ𝐑init);
push_guess CHAR “ ” Filename to read the initial push vector,

used in combination with push_mode=’file’;
ninit INT 3 Number of initial displacements without calling Lanczos;

Controlling the lanczos algorithm

lanczos_max_size INT 16 Maximum number of Lanczos iterations;
lanczos_disp REAL 10−2 Scaling factor for displacement during the Lanczos algorithm;
lanczos_eval_conv_thr REAL 10−2 Threshold for convergence of eigenvalue in Lanczos;

Controlling the eigenvector push

eigval_thr REAL −0.01 Threshold for 𝜆min which determines
when to start following the eigenvector;

eigen_step_size REAL 0.2 Maximum size of the displacement with 𝐕min;
eigenvec_guess CHAR “ ” Filename where the eigenvector guess is read;
nsmooth INT 0 Number of smoothing steps from initial displacement to eigenvector;
neigen INT 1 Number of pushes along 𝐕min before starting a perpendicular relax;
nnewchance INT 0 Number of times a research is allowed to re-initialize

the first Lanczos vector;

Control the perpendicular relaxation

nperp INT -1 Maximum number of perpendicular relaxation steps in
all ARTn macro steps;

nperp_limitation INT(:) (4, 8, 12, 16, -1) Limit of perpendicular relaxation steps for each ARTn step;

Controlling convergence

forc_thr REAL 10−3 Final force convergence on both 𝐅⟂ and 𝐅 threshold
converge_property CHAR “maxval” Define which forces quantities are compared, the maximum value

or the norm of the field. Possible values: “maxval” or “norm”
push_over REAL 1.0 factor multiplied by eigen_step_size to push the configuration

over the saddle point, before starting the final relaxation
many force computations, whereas it is sometimes not needed. This is
typically the case in the starting basin, where the lowest eigenvalue is
evidently positive. To avoid force calculations in that case, it is possible
to set the integer variable ninit, which specifies the minimal num-
ber of pushes to be done with the initial push vector, without calling
Lanczos. When the number of pushes exceeds ninit, the Lanczos pro-
cedure is called for the first time. During the first ninit steps, ARTn
is thus effectively blind to the lowest eigenvalue and the corresponding
eigenvector.

It is also possible to set ninit=0, in which case ARTn will directly
enter the Lanczos scheme from the start, and evaluate the pushing direc-
tion based on the obtained eigenvalue. This is useful when the starting
structure is already close to a saddle configuration, where the lowest
eigenvalue is very likely negative, and the structure only needs to be
refined to a saddle.

9.2.3. Controlling the Lanczos algorithm

For controlling the Lanczos diagonalisation scheme, parameters
9

lanczos_disp, lanczos_max_size, and lanczos_eval_conv_
thr are used. The lanczos_disp controls the norm of the displace-
ment Δ𝐑𝑖 prescribed by each Lanczos vector, to compute Δ𝐅𝑖 in each
iteration step. The lanczos_max_size prescribes the maximum num-
ber of iterations of the Lanczos scheme, which is also the maximal size
of the tridiagonal matrix of 𝛼𝑖 and 𝛽𝑖 coefficients getting diagonalized
at each iteration. The lanczos_eval_conv_thr is the convergence
threshold on the eigenvalue 𝜆𝑖 obtained at each Lanczos iteration 𝑖. The
convergence criterion is:

|||||
𝜆𝑖 − 𝜆𝑖−1
𝜆𝑖−1

||||| ≤ lanczos_eval_conv_thr (15)

Once 𝜆𝑖 is converged, the Lanczos scheme exits, or alternatively when
the maximal number of iterations 𝑖 =lanczos_max_size is reached.
For the first ARTn step where Lanczos scheme is called, the starting
Lanczos vector is random. Alternatively, it can be read from a file spec-
ified by eigenvec_guess, written in the xyz format, i.e. Appendix A,
with atomic types replaced with atomic indexes. For the subsequent
ARTn steps, the eigenvector calculated in the previous ARTn step is

reused as the first vector for the current Lanczos scheme.

M. Poberznik, M. Gunde, N. Salles et al.

9.2.4. Controlling the eigenvector push

Once the eigenvalue obtained is lower than a prescribed thresh-
old eigval_thr, the push vector is overwritten by the corresponding
eigenvector. The maximal size of each push with the eigenvector is reg-
ulated with eigen_step_size. In order to make a smooth transition
from pushing with the initial push vector to pushing with the eigen-
vector, the parameter nsmooth can be used, for instance nsmooth=3

indicates the transition will be done in 3 steps, where during the transi-
tion the push vector is linearly interpolated between the initial push and
eigenvector (see Ref. [9]), the default value is however nsmooth=0.

It can happen during the saddle search, that despite all efforts, a
negative eigenvalue becomes positive, without ever passing a saddle,
and in a region which is far from a minimum. In this case the direc-
tion of the eigenvector cannot be trusted anymore to be pointing in
the direction of a saddle. The default action is thus to abort the cur-
rent search, and start from the beginning. An attempt to mitigate the
behaviour in that scenario is however to re-set the initial Lanczos vec-
tor to a random vector, and attempt to recompute the true eigenvector.
The number of times this resetting is allowed to happen during a single
search is controlled by the variable nnewchance, which is by default
nnewchance=0.

9.2.5. Controlling the number of steps in the perpendicular relaxation

To avoid falling back to the initial minimum and to save some un-
necessary computational effort, it is recommended to control the num-
ber of perpendicular relaxation steps for each ARTn macro step. These
numbers are set by the array nperp_limitation, for which the de-
fault values are (4, 8, 12, 16, −1). If the structure is still in the basin –
lowest eigenvalue is positive or above the corresponding threshold, then
the number of perpendicular relaxation steps is given by the first num-
ber in the nperp_limitation array. Once the structure is out of the
basin – lowest eigenvalue is negative or below threshold, the number
of perpendicular relaxation steps is gradually increased in each ARTn
macro step, as prescribed by the sequence given by the nperp_lim-

itation array. In the case of the default values, the sequence would
be: 8 perpendicular relaxations after the first eigenvector push, 12 af-
ter the second, 16 after the third. The number of entries in the array
is free, thus adding more entries to the sequence is possible. The last
entry of the nperp_limitation array indicates the number of relax-
ation steps to be done when the sequence runs out. With the value −1,
the code will perform perpendicular relaxations until the perpendicular
component of the force is lower in magnitude than the parallel compo-
nent.

For fixing the number of perpendicular relaxation steps while the
structure is still in the basin, the input variable nperp can also be used.
If set, the value of nperp will be pre-pended to the nperp_limita-

tion array.

9.2.6. ARTn force threshold

The forces are assumed to be a 3𝑁 vector in which 𝑁 is the number
of atoms. The convergence of forces is not tested while the eigenvalue is
positive (structure is still in basin). It starts to get tested once the low-
est eigenvalue becomes negative, during the perpendicular relaxation
(possible convergence to the saddle), and during the regular relaxation
to the adjacent minima, following the criterion prescribed by the input
variable forc_thr. The configuration has converged to either a saddle
point, or a minimum, when the sum of the parallel and perpendicular
components of all atomic forces is lower than forc_thr.

The convergence of forces is tested by computing the absolute size
of the forces vector, and comparing it to the threshold forc_thr. The
absolute size of the forces vector can be computed in two ways, either as
maximal absolute element of the vector, or as Cartesian 2-norm of the
vector. The choice between the two is prescribed by setting the variable
10

converge_property=’maxval’ or ‘norm’.
Computer Physics Communications 295 (2024) 108961

The convergence criterion forc_thr can be very system-dependent,
as well as E/F engine-dependent, and it should therefore always be
tuned accordingly.

9.2.7. Final push, move to next minimum

Once a saddle point is reached, the default ARTn behaviour also
involves the final push and relaxation to the two adjacent minima.
This is controlled by the logical flag lpush_final, which when set
to .false., will signal ARTn to stop once a saddle point has been
found, and reset the atomic positions to the initial configuration. On
the other hand, if lpush_final = .true., the algorithm will use
the eigenvector obtained at saddle to push the configuration to the +/-
directions, and then allowed to relax. The size of this final push is reg-
ulated through push_over parameter.

Once the two minima are obtained, it is possible to set the atomic
positions to the adjacent local minimum, which is achieved by setting
the flag lmove_nextmin=.true.. As such the subsequent ARTn ex-
ploration starts from the new minimum configuration, otherwise the
atomic positions are reset to the initial configuration.

9.3. Output summary/or output description

Along with the regular E/F engine output, the pARTn calculation
produces another output file, named ‘artn.out’. This file contains a
summary of input variables in the header, and information about the
current ARTn search. The output quantities are given in the units de-
fined as engine units, specified by the engine_units variable. The
quantities written in output at the most verbose level are, in respective
order:

• istep: Iteration step of ARTn;
• ARTn_step: Computation block;
• Etot: Energy difference from the initial configuration;
• init/eign/perp/lanc/relx: Iterator “iblock” for each compu-

tational block;
• Ftot Fperp Fpara: The value of total force and its perpendicular

and parallel components;
• eigval: The minimum eigenvalue computed by lanczos;
• delr: The total displacement of the configuration from the initial

configuration;
• npart: Number of particles moved from the initial configuration;
• evalf: Number of force evaluations;
• a1: scalar product between the current and the previous push di-

rection.

A brief report is written at the convergence to the saddle point, indi-
cating the energy difference of the saddle with respect to the initial
configuration, and the filename in which the saddle configuration is
saved. A similar report is written at the convergence to minima from
the saddle point. At the end of the search, a debriefing line is written,
which summarises the search.

In addition to artn.out, the files containing found configura-
tions are generated. These files are written in the format requested
(struc_format_out=’xsf’, or ‘xyz’), and contain information on
the number of atoms, lattice vectors, total energy, atomic types, atomic
positions, and the forces. The filenames produced during each ARTn
search are written at the end of the output artn.out.

At the lowest level of verbosity verbose = 0, only the configura-
tion filenames are printed in the output.

10. Examples

The repository includes several examples (in the directory exam-
ples), employing both currently interfaced E/F engines. The examples
with QE as the E/F engine are based on the ones presented in the previ-

ous ARTn ab initio implementation [9,17]. The examples with LAMMPS

M. Poberznik, M. Gunde, N. Salles et al.

as a E/F engine are taken from OptBench [20] datasets, or from the for-
mer ARTn repository,2 or have been designed for the purpose of pARTn.
In the following we describe two examples in detail, one for each inter-
face: the diffusion of an Al adatom on the Al(100) surface with QE, and
a search for saddle point of a Pt heptamer island on Pt(111) surface with
LAMMPS. To run the examples it is first necessary to have a compiled
version of the codes.

10.1. QE: diffusion of an Al adatom on the Al(100) surface

This example is designed to demonstrate a constrained saddle search
with the pARTn plugin by employing QE as the E/F engine. The in-
structions to compile and patch QE with pARTn can be found in sec-
tions 8.1.1 and 8.1.2.

The example can be found in the /examples/Alad.Al100.QE/
folder. The initial structure is a relaxed configuration of an Al adatom
adsorbed in a hollow site in a (5×5) supercell of a 6 layer Al(100)
slab. The two bottom layers of the Al(100) are constrained to their
bulk positions, whereas all other layers are allowed to relax. The cal-
culation is performed at the PBE level of theory, employing a plane
wave basis set with a 35 Ry cutoff for the wavefunctions (280 Ry for
the charge-density) in combination with an ultrasoft pseudopotential
for Al (file Al.pbe-n-rrkjus_psl.0.1.UPF3). The Brillouin zone
is sampled only at the Gamma point. The QE input file (artn.Al-
hollow.Al100-5x5-6l.in is modified in order to work with the
pARTn plugin, the key modifications being to set calculation =
‘relax’, nosym = .true., and ion_dynamics = ‘fire’ in the
appropriate namelists. A shell script (run_example.sh) is provided
that launches the example automatically.

The aim of the example is to calculate the energy barrier associated
to two different mechanisms for the diffusion of an Al adatom to an
adjacent hollow site. The first mechanism (hopping) involves only the
displacement of the Al adatom from one hollow site to another via the
bridge site. The second mechanism (exchange) involves the adatom and
its nearest neighbour, where the adatom moves to the positions of its
nearest neighbour and the nearest neighbour is displaced to the adja-
cent hollow site. This is a well known example and for more details on
different mechanisms please see Refs. [21,22].

Therefore, two constrained saddle searches (as shown in Fig. 3) are
performed with the pARTn plugin. In order to constrain the initial dis-
placement to a specific subset of atoms we set push_mode = ’list’
in artn.in. For the hopping mechanism the initial displacement is
placed only on the adatom (atomic index 1) by setting push_ids = 1
and the displacement is constrained to the [100] direction, by specify-
ing add_const(1) = 1.0, 0.0, 0.0, 0.0. All other parameters
retain their default values. On the other hand, for the exchange mech-
anism, the adatom (atomic index 1) and one if its nearest neighbours
are displaced (atomic index 14), by setting push_ids=1,14, the dis-
placement of the adatom is done in the [111] direction (towards its
nearest neighbour), and the nearest neighbour is displaced in the [111]
direction (towards a hollow site). Therefore, the constraints are spec-
ified as add_const(:,1) = 1.0,1.0,-1.0, 0.0 for the adatom,
and add_const(:,14) = 1.0, 1.0, 1.0, 0.0 for the nearest
neighbour. Additionally, the eigenvalue of the characteristic eigenvec-
tor is above the default eigval_thr, therefore the latter is set to
eigval_thr = -0.005 for this calculation. Following this setup, the
two saddle points are reliably identified. Note however that the cal-
culations for this example are computationally quite demanding and
should be run by using the parallelization capabilities of QE, i.e., by
using 16 cores (Intel-Xeon W-2295 CPU 3.00 GHz) a saddle search con-
sumes about 5 hours of wall time, mainly due to the force calculation.

2 https://normandmousseau .com /ART -nouveau .html.
3 http://pseudopotentials .quantum -espresso .org /upf _files /
11

Al .pbe -nl -rrkjus _psl .1 .0 .0 .UPF.
Computer Physics Communications 295 (2024) 108961

Fig. 3. The initial configuration and the two initial displacements that lead to
the identification of the saddle points corresponding to the hopping and ex-
change mechanism for the diffusion of the Al adatom on the Al(100) surface.
The topviews of the saddle point configurations are also shown, the calculated
activation energies (𝐸act) are 0.54 eV for hopping and 0.38 eV for exchange.

The result of this example are two identified saddle points, one for the
exchange mechanism of Al adatom diffusion, with a barrier of 0.38 eV
and one for the hopping mechanism, with a barrier of 0.54 eV (see
Fig. 3). The files generated in a successful run are available in the ref-
erence.d folder.

10.2. LAMMPS: Pt(111) surface heptamer island

This example shows the basic use of the pARTn plugin with
the LAMMPS E/F engine. It can be found in the folder /exam-

ple/Pt111_lammps/. The instructions to compile pARTn as a LAMMPS
plugin can be found in sections 8.1.1 and 8.1.4.

The structure is a Pt(111) surface with a heptamer island of adatoms
on top, which is in an energetic minimum, see Fig. 4 left. It is taken
from the OptBench database [20], from the section of saddle search
benchmark. The interatomic potential used is the Morse potential, with
𝐷 = 0.7102, 𝛼 = 1.6047, and 𝑟0 = 2.897.

The example is launched in a similar way as any other LAMMPS cal-
culation using the FIRE minimization. In order to specify the pARTn
calculation, the plugin must be loaded and invoked through the fix as
explained in section 8.1.5. There is a maximum size for the displace-
ment step in the FIRE implementation in LAMMPS (variable dmax),
which can be modified by adding it as parameter when invoking the
fix, e.g.: “fix fix_ID all artn dmax 3.0”. All other parameters
of FIRE can be edited in the same fashion.

To communicate the units of the E/F engine to pARTn, the command
engine_units=’lammps/metal’ is specified in the artn.in input
file for pARTn. Note that all parameters given in this input are now rel-
ative to the specified units. The condition for signalling a converged
saddle point for this example is that the norm of the total force is below
10−3 eV/Å, which is specified with the commands converge_prop-
erty=’norm’, and forc_thr=0.001. The parameters for computa-
tion of the eigenvalues and eigenvectors are as follows. The displace-
ment size lanczos_disp=1e-4 for the Lanczos vectors, the maximal
number of iterations lanczos_max_size=10, and the threshold of
convergence of the eigenvalue lanczos_eval_conv_thr=1e-2, i.e.
section 9.2.3. The threshold for the eigenvalue is eigval_thr=-0.02.
In order to smooth the transition from pushing with the initial push vec-
tor, to pushing with the found eigenvector, the parameter nsmooth=2

is used, which signals the transition is done in 2 steps.

https://normandmousseau.com/ART-nouveau.html
http://pseudopotentials.quantum-espresso.org/upf_files/ Al.pbe-nl-rrkjus_psl.1.0.0.UPF
http://pseudopotentials.quantum-espresso.org/upf_files/ Al.pbe-nl-rrkjus_psl.1.0.0.UPF

M. Poberznik, M. Gunde, N. Salles et al.

Fig. 4. Left: side view of the Pt(111) heptamer structure. Top right: top view
of the heptamer island and the first layer of atoms underneath, with the initial
push vector marked in blue arrows. Bottom right: the structure of the saddle
point found with the given push. The atomic bonds are drawn only between the
heptamer island atoms for clarity.

The main feature of this example is to read the initial push from
a file for the 7 atoms of the cluster, and use it to find a saddle point.
This is done by the input commands push_mode=’file’ followed by
push_guess=’ini_push.xyz’, which specifies the filename to read
from. The format of the file is explained in Appendix A. The given initial
push vector of this example is shown in Fig. 4 top right in blue arrows,
resized by factor 3 for better visibility. This vector is used to push the
structure ninit=1 times before computing the lowest eigenvalue for
the first time.

With the given input parameters and the push vector, the result
should be a saddle point with the structure as shown on the bottom
right of Fig. 4, with the energy barrier of 1.47 eV. Notice that the atom
at the centre of the hexagon had some displacement prescribed by the
initial push vector, but in the saddle point this atom is not displaced
much from its minimum position. This indicates that the initial push
vector does not need to be extremely precise to find a saddle.

In the Supplementary Materials of this article, a self-contained
python notebook is available (.ipynb file), which downloads LAMMPS
and pARTn, compiles both, and launches the Pt(111) example within a
python environment.

11. Conclusion

In the present work we describe a paradigm to bias and re-purpose
integrator algorithms already present in E/F engines, and overwrite
them with a different algorithm, in the context of atomistic simulations.
This paradigm works by modifying the instantaneous properties of the
system, which are accessed and modified via the function designed to
apply the external conditions on a system. Since these functions are
generally not invasive, biasing and taking over an algorithm in this
way is independent of the specific details of the native E/F engine. This
paradigm results in a plugin-algorithm which is easier to port, main-
tain, and align with respect to the upgrades in the E/F engines. As a
proof of concept, we present a complete re-factoring of the ARTn algo-
rithm, into a plugin library (pARTn), in line with the hijacker“bias and
12

re-purpose” paradigm. We show its porting and application to Quantum
Computer Physics Communications 295 (2024) 108961

ESPRESSO [14] and LAMMPS [15]. The pARTn library is a double li-
censed Apache-2.0/GPLv3 and can be downloaded from git repository.4

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

I have shared the link to my code at the attach file step

Acknowledgements

N.M.’s work is supported in part by a grant from the Natural Sci-
ences and Engineering Research Council of Canada. This work was per-
formed using HPC resources from CALMIP (Grant P1418). M.P. M.G.,
N.S., A.J., A.H., N.R., N.M., L.M.S. are active members of the multiscale
and multimodel approach for materials in applied science consortium
(MAMMASMIAS consortium) and acknowledge the efforts of the con-
sortium in fostering scientific collaboration.

Appendix A. Guess input vector format

The vector is given in the standard xyz format, where the first line
is the number of atoms in the list, second line is empty (comment),
and the list of atoms starts at the third line. The format of the list is
flexible. The first argument of each line must be the atom index. If only
the atom index is given then the displacement for that atom will be
random, otherwise three numbers must be given following the atomic
index, which represent the coordinates of the push for that atom. An
example of the push init file is given for the 7 atoms of the LAMMPS
example from Sec. 10.2.

7

1 -7.58E-003 6.22E-002 -2.90E-002

2 5.44E-002 -6.24E-002 -2.90E-002

3 5.20E-002 -5.09E-002 -3.32E-002

4 5.92E-002 -6.22E-002 -4.53E-002

5 -2.61E-002 -1.24E-002 3.77E-002

6 -5.06E-002 -4.33E-002 -1.31E-002

7 4.71E-002 -3.91E-002 3.19E-002

Note that upon reading the push vector from a file, it is used as-is,
without any rescaling or other modification, thus it needs to be given
in units of ARTn, which is in Bohr radius.

Appendix B. Supplementary material

Supplementary material related to this article can be found online
at https://doi .org /10 .1016 /j .cpc .2023 .108961.

References

[1] L. Verlet, Phys. Rev. 159 (1967) 98.
[2] E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, P. Gumbsch, Phys. Rev. Lett. 97 (2006)

170201.
[3] R. Fletcher, Conjugate direction methods, in: Practical Methods of Optimization,

John Wiley & Sons, Ltd, 2000, pp. 80–94, Chap. 4, https://onlinelibrary .wiley .com /
doi /pdf /10 .1002 /9781118723203 .ch4.
4 https://gitlab .com /mammasmias /artn -plugin.

https://doi.org/10.1016/j.cpc.2023.108961
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibD9FFF50D2EEB19B64A100DABD35037A8s1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bib7A6225574C3513561BE25D255B938032s1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bib7A6225574C3513561BE25D255B938032s1
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118723203.ch4
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118723203.ch4
https://gitlab.com/mammasmias/artn-plugin

Computer Physics Communications 295 (2024) 108961M. Poberznik, M. Gunde, N. Salles et al.

[4] M. Bonomi, G. Bussi, C. Camilloni, G.A. Tribello, P. Banáš, A. Barducci, M. Bernetti,
P.G. Bolhuis, S. Bottaro, D. Branduardi, R. Capelli, P. Carloni, M. Ceriotti, A. Cesari,
H. Chen, W. Chen, F. Colizzi, S. De, M. De La Pierre, D. Donadio, V. Drobot, B. En-
sing, A.L. Ferguson, M. Filizola, J.S. Fraser, H. Fu, P. Gasparotto, F.L. Gervasio, F.
Giberti, A. Gil-Ley, T. Giorgino, G.T. Heller, G.M. Hocky, M. Iannuzzi, M. Invernizzi,
K.E. Jelfs, A. Jussupow, E. Kirilin, A. Laio, V. Limongelli, K. Lindorff-Larsen, T. Löhr,
F. Marinelli, L. Martin-Samos, M. Masetti, R. Meyer, A. Michaelides, C. Molteni, T.
Morishita, M. Nava, C. Paissoni, E. Papaleo, M. Parrinello, J. Pfaendtner, P. Piaggi,
G. Piccini, A. Pietropaolo, F. Pietrucci, S. Pipolo, D. Provasi, D. Quigley, P. Raiteri,
S. Raniolo, J. Rydzewski, M. Salvalaglio, G.C. Sosso, V. Spiwok, J. Šponer, D.W.H.
Swenson, P. Tiwary, O. Valsson, M. Vendruscolo, G.A. Voth, A. White, T.P. consor-
tium, Nat. Methods 16 (2019) 670.

[5] G.T. Barkema, N. Mousseau, Phys. Rev. Lett. 77 (1996) 4358.
[6] R. Malek, N. Mousseau, Phys. Rev. E 62 (2000) 7723.
[7] H. Kallel, N. Mousseau, F.m.c. Schiettekatte, Phys. Rev. Lett. 105 (2010) 045503.
[8] M.-C. Marinica, F. Willaime, N. Mousseau, Phys. Rev. B 83 (2011) 094119.
[9] A. Jay, C. Huet, N. Salles, M. Gunde, L. Martin-Samos, N. Richard, G. Landa, V.

Goiffon, S. De Gironcoli, A. Hémeryck, N. Mousseau, J. Chem. Theory Comput. 16
(2020) 6726.

[10] E. Machado-Charry, L.K. Béland, D. Caliste, L. Genovese, T. Deutsch, N. Mousseau,
P. Pochet, J. Chem. Phys. 135 (2011) 034102, https://pubs .aip .org /aip /jcp /article -
pdf /doi /10 .1063 /1 .3609924 /13319917 /034102 _1 _online .pdf.

[11] N. Salles, N. Richard, N. Mousseau, A. Hemeryck, J. Chem. Phys. 147 (2017)
054701.

[12] M. Trochet, L.K. Béland, J.-F.m.c. Joly, P. Brommer, N. Mousseau, Phys. Rev. B 91
(2015) 224106.

[13] J. Guénolé, W.G. Nöhring, A. Vaid, F. Houllé, Z. Xie, A. Prakash, E. Bitzek, Comput.
Mater. Sci. 175 (2020) 109584.

[14] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli,
G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G.
Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-
Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto,
C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M.
Wentzcovitch, J. Phys. Condens. Matter 21 (2009) 395502.

[15] A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S.
Crozier, P.J. in ’t Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M.J.
Stevens, J. Tranchida, C. Trott, S.J. Plimpton, Comput. Phys. Commun. 271 (2022)
108171.

[16] C. Lanczos, J. Res. Natl. Bur. Stand. 45 (1950) 255.
[17] A. Jay, M. Gunde, N. Salles, M. Poberžnik, L. Martin-Samos, N. Richard, S. de Giron-

coli, N. Mousseau, A. Hémeryck, Comput. Mater. Sci. 209 (2022) 111363.
[18] R.A. Olsen, G.J. Kroes, G. Henkelman, A. Arnaldsson, H. Jónsson, J. Chem. Phys.

121 (2004) 9776, https://doi .org /10 .1063 /1 .1809574.
[19] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M.B. Nardelli, M. Calandra, R.

Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A.D. Corso,
S. de Gironcoli, P. Delugas, R.A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo,
R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A.
Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N.L. Nguyen, H.-
V. Nguyen, A.O. de-la Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra,
M. Schlipf, A.P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N.
Vast, X. Wu, S. Baroni, J. Phys. Condens. Matter 29 (2017) 465901.

[20] S.T. Chill, J. Stevenson, V. Ruehle, C. Shang, P. Xiao, J.D. Farrell, D.J. Wales, G.
Henkelman, J. Chem. Theory Comput. 10 (5476) (2014), pMID: 26583230, https://
doi .org /10 .1021 /ct5008718.

[21] G. Henkelman, H. Jónsson, J. Chem. Phys. 111 (1999) 7010.
[22] T. Fordell, P. Salo, M. Alatalo, Phys. Rev. B 65 (2002) 233408.
13

http://refhub.elsevier.com/S0010-4655(23)00306-5/bibF3034E47986A6B5E8A8BC03936EFF6CFs1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibF3034E47986A6B5E8A8BC03936EFF6CFs1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibF3034E47986A6B5E8A8BC03936EFF6CFs1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibF3034E47986A6B5E8A8BC03936EFF6CFs1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibF3034E47986A6B5E8A8BC03936EFF6CFs1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibF3034E47986A6B5E8A8BC03936EFF6CFs1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibF3034E47986A6B5E8A8BC03936EFF6CFs1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibF3034E47986A6B5E8A8BC03936EFF6CFs1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibF3034E47986A6B5E8A8BC03936EFF6CFs1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibF3034E47986A6B5E8A8BC03936EFF6CFs1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibF3034E47986A6B5E8A8BC03936EFF6CFs1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibF3034E47986A6B5E8A8BC03936EFF6CFs1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bib84F1045A3BECDF7CD314B5755311DCD0s1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bib586516E8146AD2891E25AB8FACD19F8Cs1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibDA4A2F245C36025BB00C761137F2C586s1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibBFF43E7FAFFC9FE2A63EA13D0CFE48DCs1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibB6D343022EB2E6D7382C0ABC7A7A494Es1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibB6D343022EB2E6D7382C0ABC7A7A494Es1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibB6D343022EB2E6D7382C0ABC7A7A494Es1
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.3609924/13319917/034102_1_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.3609924/13319917/034102_1_online.pdf
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibDD7087D699970CD352B61E4289DC8B9Cs1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibDD7087D699970CD352B61E4289DC8B9Cs1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibE31864413C268AF492EEE2D3977B0CA7s1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibE31864413C268AF492EEE2D3977B0CA7s1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibD9B9B55DA5B8972FF71E3540D8A2B7ACs1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibD9B9B55DA5B8972FF71E3540D8A2B7ACs1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bib53A35EA7D5D0EC1C403302DA7B549E4As1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bib53A35EA7D5D0EC1C403302DA7B549E4As1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bib53A35EA7D5D0EC1C403302DA7B549E4As1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bib53A35EA7D5D0EC1C403302DA7B549E4As1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bib53A35EA7D5D0EC1C403302DA7B549E4As1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bib53A35EA7D5D0EC1C403302DA7B549E4As1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibCDBE6663305AD47936DE845CC1350D57s1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibCDBE6663305AD47936DE845CC1350D57s1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibCDBE6663305AD47936DE845CC1350D57s1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibCDBE6663305AD47936DE845CC1350D57s1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibBA55D1A9EA7CFB9F3A72D4E0D6A3C489s1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibADE49E7A1FACFF527421DFEB07E54A4Bs1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibADE49E7A1FACFF527421DFEB07E54A4Bs1
https://doi.org/10.1063/1.1809574
http://refhub.elsevier.com/S0010-4655(23)00306-5/bib9DE747FF9F914B40DD9D5B8A468949F2s1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bib9DE747FF9F914B40DD9D5B8A468949F2s1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bib9DE747FF9F914B40DD9D5B8A468949F2s1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bib9DE747FF9F914B40DD9D5B8A468949F2s1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bib9DE747FF9F914B40DD9D5B8A468949F2s1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bib9DE747FF9F914B40DD9D5B8A468949F2s1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bib9DE747FF9F914B40DD9D5B8A468949F2s1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bib9DE747FF9F914B40DD9D5B8A468949F2s1
https://doi.org/10.1021/ct5008718
https://doi.org/10.1021/ct5008718
http://refhub.elsevier.com/S0010-4655(23)00306-5/bib2861355969593A8AB0D5FB509415C5D2s1
http://refhub.elsevier.com/S0010-4655(23)00306-5/bibD840762CCA55F1193DAA607C3D914CDBs1

	pARTn: A plugin implementation of the Activation Relaxation Technique nouveau that takes over the FIRE minimisation algorithm
	1 Introduction
	2 The concept
	3 Biasing the FIRE algorithm
	4 The ARTn algorithm
	4.1 Lanczos applied to the Hessian matrix

	5 Repurposing FIRE to deliver ARTn
	5.1 Achieving specific displacements for ARTn
	5.2 Algorithm control with flags and counters

	6 Implementation details
	6.1 The artn() routine
	6.2 The move_mode() routine
	6.3 The clean_artn() routine

	7 API and engine-specific interface
	7.1 Quantum ESPRESSO interface
	7.2 LAMMPS interface
	7.3 Summary for the building of an interface

	8 Package description and documentation
	8.1 Quick installation guide
	8.1.1 Compile pARTn
	8.1.2 pARTn for Quantum ESPRESSO
	8.1.3 QE input specification
	8.1.4 pARTn for LAMMPS
	8.1.5 LAMMPS input specification
	8.1.6 delete_atoms and order in LAMMPS

	9 Input and output
	9.1 I/O format
	9.2 Input description
	9.2.1 Controlling the initial push
	9.2.2 Controlling the number of pushes before calling Lanczos
	9.2.3 Controlling the Lanczos algorithm
	9.2.4 Controlling the eigenvector push
	9.2.5 Controlling the number of steps in the perpendicular relaxation
	9.2.6 ARTn force threshold
	9.2.7 Final push, move to next minimum

	9.3 Output summary/or output description

	10 Examples
	10.1 QE: diffusion of an Al adatom on the Al(100) surface
	10.2 LAMMPS: Pt(111) surface heptamer island

	11 Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Guess input vector format
	Appendix B Supplementary material
	References

