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ABSTRACT
Saddle points on high-dimensional potential energy surfaces (PES) play a determining role in the activated dynamics of molecules and materi-
als. Building on approaches dating back more than 50 years, many open-ended transition-state search methods have been developed to follow
the direction of negative curvature from a local minimum to an adjacent first-order saddle point. Despite the mathematical justification, these
methods can display a high failure rate: using small deformation steps, up to 80% of the explorations can end up in a convex region of the PES,
where all directions of negative curvature vanish, while if the deformation is aggressive, a similar fraction of attempts lead to saddle points
that are not directly connected to the initial minimum. In high-dimension PES, these reproducible failures were thought to only increase
the overall computational cost, without having any effect on the methods’ capacity to find all saddle points surrounding a minimum. Using
activation-relaxation technique nouveau (ARTn), we characterize the nature of the PES around minima, considerably expanding on previous
knowledge. We show that convex regions can lie on activation pathways and that not exploring beyond them can introduce significant bias in
the saddle-point search. We introduce an efficient approach for traversing the convex regions, almost eliminating exploration failures, while
multiplying by almost 10 the number of identified unique and connected saddle points as compared to the standard ARTn, thus underlining
the importance of correctly handling convex regions for completeness of saddle point explorations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0210097

I. INTRODUCTION
Saddle points (SP) on potential energy surfaces (PES) are of

crucial importance in modern chemistry and materials science.
These specific points correspond to the atomic structures that have
the highest energy along the minimum energy paths (MEP) connect-
ing two states. Within the transition state theory,1 they represent
transition states that provide the mandatory information needed to
access the kinetics of an atomic system, including the energy barriers
required to displace atoms. Consequently, they grant knowledge of

the diffusion and reaction rates, which is crucial to comprehending
the temporal evolution of an atomic system.

The PES is generally a complicated function of the configura-
tion space: for 3D systems, it spans 3 ×Nat dimensions, where Nat
is the number of atoms. Evaluating the PES for a given set of atomic
positions is computationally demanding as it requires knowledge of
both the total energy and its first derivative (forces) that need to
be computed in some way, generally using empirical potentials or
quantum mechanics.
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The algorithmic approach used to find SPs on a PES depends
largely on how much one already knows about the PES. The
challenge can be categorized into: (i) single-ended or open-ended
problems, for which only the initial structure is known; the PES
must be explored all around the initial structure to find the adja-
cent SPs. (ii) Double-ended problems, for which both the initial
and final structures are known; the PES exploration can then be
limited to finding a continuous MEP between the two known struc-
tures, which are generally the local minima of the PES. The most
common algorithms used to solve double-ended problems are vari-
ations on the string method.2–5 Although open-ended algorithms
are used primarily to identify unexpected reaction mechanisms,
they can also address double-ended problems by using a starting
structure that is linearly interpolated between the initial and final
ones,6 or any other improved interpolation.7 Today, the dominant
open-ended SP search algorithms include the activation relaxation
technique (ARTn),6,8–10 the eigenvector-following method,11 the
dimer method12,13 and the reduced gradient.14 A review of algo-
rithms that solve open-ended problems is given in Ref. 15. All of
them had initially been developed more than a quarter of a century
ago.

The low-energy first-order SPs are the most relevant for the
dynamical evolution of the system (first-order SPs are referred to
simply as SPs in the rest of this paper). In fact, due to the Boltzmann
factor determining their relative probability of occurrence, they are
exponentially favored in thermodynamics. The regular critique of
SP searching methods is that it is never certain that they are able
to find all relevant SPs in a region of a PES and that there is no
straight-forward way of (dis)-proving that. Partially as an answer
to that critique, it is often assumed that the regions of PES poten-
tially inaccessible to the exploration mainly contain the high-energy
SPs, which are not of much interest, and thus the ability of finding
them is irrelevant. In addition, a sufficiently broad exploration
should always find the low-energy SPs, assumed to reside in areas
of the PES that can be described with relatively simple reaction
coordinates, which the algorithm can easily explore. The hypothesis
that low-energy SPs can be located in regions of the PES that are
hardly or not accessible at all was, therefore, believed to be unlikely
and was not really tested.

Within this context, the efficiency of open-ended algorithms for
SP-search can be gauged based on two primary metrics: (i) the count
of unique SPs found that are connected to the starting minimum,
knowing that no mathematical theory provides the upper bound for
that number in a generic system16 and (ii) the average number of
force evaluations needed to reach an SP. As the paths to different
SPs can take drastically different numbers of steps, a combination
of these two metrics can also be used to measure the total efficiency
of an algorithm by counting the total number of force evaluations
needed to find all the relevant SPs, i.e. the ones below a given energy
threshold. However, such a count is more dependent on the specific
method selected to generate the initial displacements than on the SP
search algorithm itself.

These two metrics are obviously influenced by the detailed
implementation and parametrization of each algorithm, but more
importantly, by the structure of the energy landscape itself. The
open-ended method ARTn stops the search when, on the path to
the SP, all directions that display a negative curvature of the PES
vanish because there is no promising direction to follow anymore.

Mathematically, this happens when the system finds itself on a
convex region (CR) of the PES. As shown in this paper, CRs can
be located (i) around the starting minimum, which can sometimes
be reached when the algorithm relaxes back into the starting basin
or (ii) above the first inflection of the PES, and it is impossible to
predict when they will be encountered using only local information.
In some other algorithms, such as the dimer method,12,13 the CRs are
escaped by continuing to follow the direction of minimum curvature
uphill until a negative eigenvalue reappears. In Sec. V, we show that
this can lead to new SPs, but that better choices for exiting CRs are
possible.

Problem (i) was identified a while ago,10 and an elegant solution
was implemented to limit its occurrence.6 Issue (ii) was long consid-
ered computationally costly to resolve and without any real impact
on the SP search. In fact, it was assumed that in a high-dimensional
space, it is always possible to find another path on the PES that goes
around the CRs, and thus, finding all SPs connected to the initial
minimum would always be possible in some way.

In this article, the latter issue is critically revisited with a
demonstration that these previous assumptions are incorrect. Build-
ing upon a generic analysis, we offer a detailed characterization of
the features of a 2D PES and how they affect pathways between
a local minimum and the connected saddle point. We then show
that this understanding is fully generalizable to a higher-dimensional
system; this allows us to explore various fundamental modifica-
tions to correct the major under-sampling of current open-ended
methods.

Three different methods are proposed, implemented in ARTn,
and compared, with the objective of properly overcoming convex
regions during saddle-point searches. We find that the best solution
of all the three is to continue pushing the system by following a direc-
tion prescribed by a “double” random vector. The proposed method
is general and can consequently be implemented in any minimum
eigenmode-following algorithm.

We show on a real example of solid-state physics that the
features found on the 2D example, which could be regarded merely
as a toy model, are not only present in higher dimensions but are
also of high importance for navigating the PES. We demonstrate
explicitly that ignoring the CRs can result in the inability to explore
a potentially significant portion of the PES, resulting in the failure to
identify up to 90 percent of truly connected saddle points.

Computationally, the proposed modifications reduce the
fraction of failed attempts, which can reach 25–80 percent with the
standard algorithms to less than 1 percent, considerably reducing the
net number of force evaluations per successful saddle search, while
multiplying by up to 10 the number of different connected saddle
points found. Importantly, and contrary to previous assumptions,
a significant fraction of low-energy SPs, which dominate kinetics,
can be located in regions of the PES that have previously been
inaccessible because of declaring the exploration as a failure once
it encountered a CR.

This paper is structured as follows: some definitions are first
recalled in Sec. II. A 2D toy PES is analyzed to establish notions
about its features in Sec. III. The current situation of the ARTn
algorithm and its main issue are described in Sec. IV. The pro-
posed improvements and the test case are detailed in Sec. V. The
results of the test case are presented in Sec. VI with discussions in
Sec. VII.
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II. DEFINITIONS
Throughout this paper, we use the following definitions, unless

explicitly specified.
The local curvature of the PES is obtained from the Hessian

matrix. It corresponds to the spectrum of eigenvalues λi. The
eigenvector Vmin corresponds to the lowest eigenvalue λi = λmin.

The parallel and perpendicular forces are defined as
F∥ = (F ⋅ Vmin)Vmin and F� = F − F∥, respectively.

A specific point of the PES can be classified as either on a
“valley” “ridge,” or “perpendicular hyperplane,” depending on the
direction of the gradient (force F) and the local curvature of the
PES, as follows. (i) The valleys are defined as the lines where the
forces F are parallel to Vmin, i.e., F� = 0 and where there is at most
one negative eigenvalue λi < 0. This negative curvature is along the
direction of the valley. Therefore, when one moves from the valley
line in any perpendicular direction, the potential energy increases.
(ii) The ridges are defined similarly as lines where the forces F are
parallel to Vmin; however, there are at least two negative eigenvalues
λi < 0. The first negative curvature is along the ridge line and the
second is perpendicular to it. Therefore, when one moves from the
ridge line along the second negative curvature, the potential energy
decreases. Similar definitions of valleys and ridges can be found in
the study by Hoffman.17 (iii) The perpendicular hyperplanes (PH)
are defined as hyperplanes where the forces F are orthogonal to
Vmin, i.e., F∥ = 0.

Any region of the PES where the lowest curvature is positive
λmin > 0 is called a convex region (CR). If a CR contains the initial
minimum, we call it the starting CR.

Any point where the lowest curvature is zero (λmin = 0) is called
an inflection point. The inflection points together form inflection
hyperplanes that are the boundaries of CRs.

Regions of the PES can be referred to as “below,” or “beyond”/“
above” a certain CR, with respect to the energy. The regions “below”
are regions, which can lead the system into a CR, while the regions
“beyond” are the ones reached by starting from the boundary
of a CR.

Many dynamics functions can be used to explore the PES; the
ones used in this paper are the “minimization” and the “eigenmode
following” SP exploration. Each of them exhibits some fixed points
in the phase space to which the dynamical evolution tends, or
converges. These fixed points are called the attractors, for the
minimization, they are minima points, and for SP exploration, they
are the SPs. Any set of points on the PES where all the points
evolve to the same attractor forms a region called the attracted
region.

In higher dimensions, the valleys and ridges are still of dimen-
sion 1, whereas the perpendicular hyperplanes are of dimension
3Nat − 1. The convex regions are hypervolumes of 3Nat dimensions,
which are delimited by 3Nat − 1 dimensional inflection hyperplanes,
where the lowest eigenvalue is zero.

III. ANALYSIS OF THE PROBLEM
A 2D toy-model PES is analyzed in Fig. 1 in order to understand

its characteristics, which are important from the point of view of SP
search algorithms.

The region in black shown in Fig. 1(a) indicates all the points
where a minimization function started from there, will end up in the
minimum indicated by a larger black point, i.e., the black minimum
is the fixed attractor point for the minimization function, and the
black region is its attracted region. Throughout this paper, they are
simply referred to as the minimum and its basin, respectively. This
figure is generated by launching a minimization from 62 500 equally
distributed points on a 250 × 250 2D grid and coloring the ones that
relax to the black minimum. Starting the minimization from any
point outside this region will end up in a different minimum. The
SPs are by definition located on the boundary of the basin [colored
points shown in Fig. 1(a)], and a steepest-descent minimization from
the SPs toward the minimum is a unique path connecting the SP
and the minimum [colored lines shown in Fig. 1(a)], which is also
called the intrinsic reaction coordinate (IRC). These SPs are defined
as “connected” to the minimum.

In Fig. 1(b), we change the function from minimization to an
SP search algorithm that always follows Vmin. The fixed attractor
points are then the SPs indicated by the colored points. The colored
regions are the regions attracted to the corresponding SP, meaning
that an exploration started from any point in a given region will end
up at the SP of the same color. Notice that not all SPs are reach-
able by following the Vmin starting from the minimum. In order
to reach SPs other than yellow and magenta, the algorithm first
has to move the starting position away from the minimum until
it enters a given attracted region, and only then begins following
the Vmin.

In Fig. 1(c), the features of the PES, namely, the valleys, ridges,
perpendicular hyperplanes, and CRs, as defined in Sec. II, are shown
in black, green, gray, and blue, respectively. Several things from this
figure should be noted as follows.

A. Reach SP by ascending a valley
Since an SP is a local maximum along a valley line, it can be

reached by ascending the valley. Thus, reaching an SP by following
Vmin requires finding that valley. Therefore, reaching all the SPs con-
nected to a given minimum requires finding all the valleys present in
the basin region of that minimum.

B. More SPs than eigenmodes—valleys must branch
In a two-dimensional system, as shown in Fig. 1, the minimum

has only two eigenmodes. Following each eigenmode from the min-
imum in either ± direction can thus potentially lead to 2 × 2 valleys
in total and their corresponding four SPs (assuming that each eigen-
mode, even if it is not the lowest mode Vmin, becomes a valley at
some point, for which there is generally absolutely no guarantee).
However, the number of SPs around the minimum shown in Fig. 1
is five, which means that at least one valley must necessarily “branch”
into multiple valleys somewhere within the basin. In a realistic sys-
tem with Nat atoms, the PES has 3Nat dimensions and a minimum
has 3Nat eigenmodes. Hence, a maximum of 2 × 3Nat valleys and
their SP can be reached when following ± each of the eigenmodes
from the minimum (limited to two SPs if following only Vmin), while
none of the “emergent” SPs can be reached. The total number of
SPs in a realistic system depends on the unknown number of valley
branchings.
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FIG. 1. Analysis of a 2D example PES where typical features can be found. The big points represent stable structures, where F = 0: minimum (black) and saddle
points (colored). The regions of the PES colored in a certain way represent the set of points having the same characteristics: 1(a) and 1(d): (black) basin for min-
imization, (colored lines) IRC. 1(b), 1(e), and 1(f): regions attracted to SPs of the same color. 1(c)–1(f): PES features, valleys (black), ridges (green), perpendicular
hyperplanes (gray), and inflection hyperplanes (blue), as described in Sec. II. 1(f): (dashed blue) the regions that lead to a CR by following Vmin. The analytical value of the

PES is E(x, y) = 1
2

cos ( xy
5
) cos ( 3x

5
) cos ( y

2
) + cos (x) cos ( 3y

2
) + exp (− (x−17)2

+(y−17)2

125
) for x ∈ [13; 18] and y ∈ [14.7; 18.6].

C. CRs other than starting CR
The minimum is located within a CR called the starting CR, but

that is not the only CR present on the PES. We can observe other
CRs, where different things can happen, such as a valley (black) that
transforms into a perpendicular hyperplane (white) or vice versa.
The point where this happens is noted by VtoPH. It corresponds
to the “birth/death” of the valley.

D. Valleys branching
There are places where two valleys dissociate, which are gen-

erally called reaction path branching18 or valley bifurcations.19 In
the most general case where the PES is not symmetric, the two (or
more) valleys of a branching do not cross by touching each other
at a single point, but by only approaching each other, thus forming
a forbidden crossing,20 also known as diabolic or exceptional
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points.21 In this 2D example, a valley branching is located in
the CR.

While most of the literature cited above generally speaks of
bifurcation/branch points, we show with the simple 2D PES exam-
ples in Fig. 1(c) that they possibly occur in regions larger than a
single point. The crossings are indeed reduced to a single point in
highly symmetric molecular systems, such as the ones studied in
most associated literature. A particular example of a highly symmet-
ric PES that exhibits a single point branching of valleys is presented
in Appendix B.

E. Other significant points and regions
Valley-ridge inflection points (VRIs),22 located at the con-

tact between the black (valleys) and green (ridges) lines shown in
Fig. 1(c) are important regions of the PES. Algorithms do not use
infinitesimal but finite-sized steps, which implies that ridges can
sometimes be reached and also crossed. However, since the ridges
are defined with at least two negative eigenvalues, they cannot be
located within CRs, where all the eigenvalues are positive. As these
structures are not hindering the SP search procedure, VRIs are not
discussed further in this article.

By definition, the boundaries of the basin can be obtained
from each SP by following the hyperplanes orthogonal to the isoen-
ergy hyperplanes (hyperplanes on which the energy is constant).
As shown in Fig. 1(d), in the vicinity of the SPs, this is equivalent
to following the perpendicular hyperplane. In Fig. 1(e), these PES
features are superposed above the regions attracted to the SPs. One
can observe that the boundaries of these regions are mainly perpen-
dicular hyperplanes that act like uncrossable barriers if the size of the
displacement used by the algorithm is small enough.

F. Implications for SP search algorithms
The main goal of SP exploration algorithms is to find as many

SPs as possible for a given basin. Thus, it can be concluded from the
preceding observations that the main focus is to find all the valleys
present in the basin, no matter where they originate. This implies
first moving away from the initial minimum. The choice of the
algorithm is then to specify when it is “far enough” to start follow-
ing Vmin. The algorithm must be able to reach the regions where
valley branchings occur in the form of a forbidden crossing or
otherwise. Cases where a branching occurs below a CR should
not be problematic since consecutive searches with different initial
directions can easily access all its branches. However, branching can
occur within CRs or above. Therefore, to reach these new valleys, it

should be important to pass through a CR when it is encountered
and explore the regions beyond it.

These observations are not specific to the particular region of
the example 2D PES analyzed above. A different region of the PES
with similar features is shown in Appendix A.

It might not be obvious or straightforward that observations
made on a 2D example PES can be generalized to a realistic sys-
tem with 3Nat dimensions. However, as shown in Secs. V and VI,
realistic systems actually do exhibit the described properties of the
PES, and some notions from the 2D example can be applied in higher
dimensions.

IV. THE SITUATION IN ARTn
The original ARTn method is discussed in more detail else-

where, for instance, in Refs. 6, 10, 23, and 25. In the present section,
we highlight its features with respect to the insights from Sec. III. A
schematic is shown in Fig. 2, where the improvements present in this
paper are highlighted in blue and detailed in Sec. V A.

A. Original algorithm
The ARTn algorithm can start the PES exploration from any

structure (point on the PES), not only strictly from a minimum
structure.6 However, most applications require starting in a mini-
mum; therefore, we specify the description to that case. The overall
algorithm does not change when the starting structure is not in a
minimum.

A saddle point is a maximum along one dimension (its valley)
and a minimum along all other dimensions (its perpendicular hyper-
plane defined in Sec. II). Therefore, to reach an SP, the ARTn
algorithm is based on the following three-step procedure:

1. Compute λmin and the corresponding Vmin at the current
position. If λmin < 0, set Vpush = Vmin.

2. Push the system uphill along Vpush.
3. Relax F�, the forces perpendicular to Vpush.

At first, the starting structure is deformed away from the min-
imum in a random (or constructed) direction Vpush = Vrinit until a
negative eigenvalue λmin is found, indicating that the boundary of the
starting CR has been passed, beyond which Vpush = Vmin is followed.
This initial random deformation already avoids biasing the search to
the valleys directly connected to the initial minimum. However, it

FIG. 2. Three steps of the ARTn algorithm (red) taken from Refs. 23 and 24. The new part that allows escaping the CRs is in blue. VCR is the vector used to push the system
when it is in a CR: it can be Vrinit, Vrnew, Vrinit + Vnew, or Vmin, depending on the method. ϵ is the user-defined force threshold that defines the saddle point.
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should be noted that despite this initial random deformation, the
white SPs is still unreachable, as shown in Fig. 1(e).

In the starting CR, the perpendicular relaxations only serve to
avoid atomic collisions and non-physical configurations that can
arise from the random deformation. The number of relaxation steps
is then reduced to 1 or 2. Above the inflection, it serves to fall down
into the valley and a higher number of relaxation steps must be
performed. To avoid perpendicular relaxation that brings the
system back to the starting CR, the switch of the Vpush direction from
Vrinit to Vmin can be smoothed in a small number of steps,6 which
helps steer the structure away from the starting CR. The number of
perpendicular relaxation steps can also be reduced in the vicinity of
the starting CR and progressively increased.

It has been observed that the convergence of ARTn to an SP is
faster when the rate of convergence in the parallel and perpendic-
ular directions is approximately equal. Therefore, each ARTn step
outside of any CR performs the perpendicular relaxation for a
desired number of steps, or until F� < F∥.

ARTn steps are repeated until an SP is reached, which is char-
acterized by a negative curvature λmin < 0 and a total force of the
system F = 0, or operationally lower than a given threshold. At
a first-order SP, λmin is the unique negative eigenvalue and its
corresponding eigenvector Vmin lies along the valley direction.

Because only the minimum eigenvalue λmin and the eigenvector
Vmin are sought, the full Hessian matrix is never constructed or
diagonalized, but only a subset of the space is generated using the
Lanczos algorithm.26 The direction of Vpush is always opposite to F∥.
Due to this, a structure that is pushed slightly through a boundary
of the basin can still find its way to the nearby SP. In fact, as shown
by comparing Figs. 1(a) and 1(b), the regions attracted by the SPs
extend beyond the boundary of the basin.

Finally, to confirm that the SP found is on the hyperplane mark-
ing the boundary between two basins, the initial and the other one,
an energy minimization is performed from the SP after a slight dis-
placement away from it in both the ± directions of Vmin. If one of
the two end points of this minimization corresponds to the initial
structure, the SP is considered connected.

B. The main issue
The main issue with the current ARTn algorithm is that it

considers any CR other than the starting CR as a dead end. As a
result, any exploration directed to a region of the PES where ARTn
leads the structure into a CR is useless, since the algorithm will
stop and no SP will be found going there. For the 2D toy model,
such regions are marked by the dashed blue shown in Fig. 1(f). It
means that all the Vrinit directions emerging from the starting CR
toward the indicated area will end up in the second CR and result
in a failed SP search attempt. This situation is not anecdotal: for the
2D model, failed searches represent about 35% of the possible initial
directions.

The historical decision to stop the exploration when losing the
negative curvature was due to two false hypotheses. It was assumed
that (i) the fact that some SPs could not be reached by following Vmin
from the edge of the starting CR is limited to low-dimensional PES,
and (ii) it is always possible to find another path on the PES that goes
around the CRs. However, contrary to what was expected, we show
in Sec. VI that in higher dimensions, the lost SP searches associated

with such features of the PES can represent up to more than 80% of
the explorations. High dimensions can bring more complexity: for
some systems, a significant number of CRs must be crossed before
reaching an SP, which implies that, depending on the systems, a
sizable fraction of the PES and its SPs are not reachable by the
current ARTn algorithm. Therefore, simply bringing the system
beyond the starting CR before following Vmin is not sufficient to
reach the SPs located above further CRs, such as the cyan and white
SPs shown in Fig. 1(f). To mitigate the issue and ensure the complete
sampling of SPs, further changes of the algorithm are required.

In the following, to facilitate reading, we qualify SPs as “direct”
when they can be reached from the starting CR without crossing any
additional CR and as “indirect” when at least one other CR has to be
crossed.

V. METHODS AND PROCEDURES
As has been described in the previous sections, CRs should not

be simply discarded as a “failed search” because this failure blocks
the access to the portions of the PES that are above them and, con-
sequently, to its SPs. Ideally, every time a CR is encountered, the
PES should be explored to find all the merging valleys. Each valley
should then be followed, as they all lead to an SP or to a valley-ridge
inflection point.27 As it is a priori not possible to distinguish the
location of the branchings by simply looking at the local eigenvalue
spectrum, a method to find all of them could be to start a number of
new fully random explorations in multiple independent directions.
However, such a method would be computationally demanding and
potentially inefficient. In the following, we propose and explore
some lower-cost alternative procedures to continue the ARTn SP
search when encountering a CR. Such a procedure must avoid
terminating ARTn exploration in cases where Vrinit is directed from
the initial minimum toward the dashed blue area shown in Fig. 1(f).
It must be able to reach the white and cyan attracted regions and the
SPs that are above CRs.

A. Proposed procedures
A CR is considered to be detected when the lowest eigen-

value λmin becomes positive while previously negative (λmin,prev < 0).
When this happens, the current ARTn algorithm schematized in
Fig. 2 aborts its SP search, as Vmin in CR does not contain particular
information with respect to a connected SP.

To prevent exploration failure and in the absence of local infor-
mation, the push vector in CR, Vpush, is no longer determined by
Vmin and must be assigned a new direction Vpush = VCR. This mod-
ification is highlighted in blue, as shown in Fig. 2. The vector VCR is
chosen so that it allows reaching any of the valleys that potentially
emerge from the CR or are located beyond it.

Operationally, when a CR is detected, VCR is defined as the
new push vector until a negative eigenvalue λmin is detected. VCR is
further updated if a new CR is detected. Inside the CR, the norm of
the pushing vector along VCR is set to constant because the goal is to
rapidly pass the inflection, not to converge somewhere. This choice
is discussed in Sec. VII C. Here, the following four definitions for
VCR are tested:

● VCR = Vmin, where the lowest eigenvector Vmin is followed
regardless of the sign of the convexity of the PES. This is the
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FIG. 3. SPs reached with ARTn starting from the same minimum, as a function of the vector VCR used to escape the CRs encountered. Starting from the minimum, 200
searches are launched in uniformly distributed Vrinit directions, forming a circle in 2D. Each of the 200 slices of the circle around the initial minimum is colored according to
the color of the SP reached, with red indicating the directions leading to failed explorations (no SP reached due to trajectory cycling in a loop). The VCR = Vrnew case is not
shown, as it gives the same kind of results as shown in Fig. 3(c), but with a larger number of force evaluations. A video showing the complete exploration leading to these
results is given in the supplementary material with its gnuplot script.

simplest and most obvious choice. However, doing this in
a CR containing a forbidden crossing of two valleys always
leads to the same valley (the one most aligned with the Vmin
calculated when entering the CR) and, consequently, will
always ascend to the same SP. In the 2D example shown
in Fig. 1(f), following the valley that enters the CR contain-
ing the branching will always lead to the cyan SP, while the
second valley merging from the convex region will never be
followed. Consequently, the white SP will never be reached.
This problem is shown in Fig. 3(a), where exploration of the
PES starting from the minimum is performed in all possi-
ble initial directions Vrinit up to a negative curvature, from
which point, the eigenvector Vmin is followed even if the
ARTn algorithm encounters a CR. Each Vrinit direction is
then colored with the color of the SP reached. Only four
(yellow, green, magenta, and cyan) of the five saddle points
are reached with this approach (not white). Therefore,
the proposed modification VCR = Vmin cannot meet the
objectives described above.

● VCR = Vrinit, where the starting random vector is reused.
This ensures that the system does not move back toward
the direction of the initial minimum. The 2D example
using this vector shown in Fig. 3(b) works well, but it can
generate some cycling issues represented by the red direc-
tions (cycling issues are also observed in higher-dimensional
atomistic systems, see Sec. VI B).

● VCR = Vrnew, where Vrnew is a completely new random
vector. As the positions of the valleys within the CR are
unknown, all directions should be considered with equal
probability. With such an approach, two different ARTn

searches that enter the same CR will leave it following
two different directions and potentially reach two different
valleys. To be efficient, an isotropic random vector is first
generated and then multiplied by Vrinit, resulting in a vector
Vrnew that is specifically localized on the atoms of interest.
Multiplying Vrnew by the local forces has also been tried in
this study; however, this approach often leads to SPs that are
not localized around the initial central atom. As suggested
in Ref. 28, a force threshold could have been used to confine
the displacement on the atoms that have the highest force,
but this represents an additional user-defined parameter to
finally get quite the displacements of Vrinit.

● VCR = (1 − α)Vrinit + αVrnew, where α ∈ [0; 1] is a mixing
parameter (see the Appendix for its optimization). This pro-
cedure generates a wide variety of directions originating
from the same initial Vrinit, while preventing pushing the
system back to the minimum. In 2D, the possible direc-
tions that can be generated are represented by the red area
shown in Fig. 4. This effectively combines the advantages of
VCR = Vrinit and VCR = Vrnew procedures. An additional
benefit is that this procedure avoids the looping trajectory
discussed in Sec. VI B. This approach offers the best results
on the 2D model system, as shown in Fig. 3(c), and all SPs
are reached without any failure.

B. Applications to complex atomistic systems
The proposed methods have been tested on many different

systems to validate their generality. Here, we consider an amor-
phous system that represents the problem described in Sec. III and
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FIG. 4. Black vector Vrinit: starting random vector pointing away from the initial
minimum. Blue vector Vrnew: new random vector reinitialized each time a CR
is detected; it can point anywhere. Red vector: VCR = (1 − α)Vrinit + αVrnew
is the new pushing direction used in CRs. All the vectors are normalized. The
red area corresponds to the possible directions for the VCR vector as a func-
tion of Vrnew orientation for a given α. Here, α = 0.42 is used in this schematic
representation.

a highly degenerate case is discussed in the Appendix B. The amor-
phous system is chosen because the initial minimum is connected
to a very large number of different SPs and because many CRs
need to be crossed to get them. This is one of the worst situations
for SP exploration algorithms. Explorations of the PES have been
performed with the ARTn code in its fast plugin version25 coupled
with LAMMPS.29

We start with a simulation box of 1000 silicon atoms in a highly
stable amorphous configuration created, as described in Ref. 30 and
stabilized following the procedure of Ref. 31. Interatomic forces are
calculated using a modified Stillinger–Weber empirical potential.32

For each of the four VCR procedures proposed in Sec. V A, 3000
explorations are performed; all starting from the same stable struc-
ture that represents a local minimum of the PES. Each exploration
begins with a push along a randomly selected vector Vrinit away
from the initial minimum. This random vector is localized on a given
atom and all its neighbors are contained within a 3.5 Å radius. The
central atom and its four neighbors remain the same throughout the
3000 explorations to allow detailed sampling of the 15-dimensional
space of initial random deformations. The displacement step norm is
set to 0.2 Å when λmin is positive and becomes proportional to the
forces above the inflection (see Fig. 2). To compare the efficiency
of the four VCR procedures described above, the 3000 different
starting random vectors Vrinit, the starting Lanczos vector, and the
random seed are identical for each of the four sets. To limit the
computational cost of cycling trajectories, all the SP searches are
stopped (returns a failure) when the number of force calculations
exceeds 4000 or when the number of encountered CRs is larger
than 30.

The force threshold used to determine the convergence to an SP
is set to 10−5 eV/Å. This very stringent threshold is needed to ensure
that new and already visited SPs are properly identified; as in amor-
phous materials, atoms can be easily displaced without necessarily
changing the energy significantly, and thus, a precise convergence is
essential for obtaining similar atomic positions in different calcula-
tions of the same SP. Two SPs are considered identical if the absolute

differences in their energy and the distance between structures are
less than 10−2 eV and 10−1 Å, respectively.

VI. RESULTS
A. No failures and new saddle points

The first remarkable effect of continuing to push beyond the
CRs is that regardless of the selected VCR method, the number of
saddle points found is drastically increased as new portions of the
PES become accessible to the algorithm. This is shown in Fig. 5:
only 23 different direct saddle points (big red squares) are gener-
ated using the previous implementation of ARTn, whereas hundreds
of indirect SPs are found with the modifications proposed here. Not
surprisingly, the SP energy increases with the number of CRs crossed
during the SP search. However, even if most of the new SPs have a
high energy, some of these energies are relatively low, comparable to
those of the direct SPs. This is the main message of the article: some
thermodynamically important SPs are missed without crossing CR.
Interestingly, the SPs that are most often found, with all methods,
are those close, in distance, to the initial structure. As shown in

FIG. 5. SPs connected to the initial minimum (CSP) found in an amorphous silicon
cell after 3000 ARTn searches as a function of the method used to handle CRs
(VCR). Vmin, Vrinit, Vrinit + Vrnew, and Vrnew are described in the text. (a) Total
number of SPs found with each method. All CSP: counting only the connected
SP. Unique CSP: counting CSPs reached several times only once. Prev: previous
ARTn approach that stops in CR. (b) As a function of the SPs energy relatively to
the starting minimum: atomic displacement from the initial minimum (top panel),
occurrence of each SP (middle panel), and cumulative number of unique saddle
points (bottom panel). For clarity, only the connected SPs below 5.5 eV and 4.5 Å
are plotted, and the Vmin results are not shown.
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FIG. 6. Histogram of the number of times an eigenvalue switches from negative to
positive (detecting a CR) over 3000 SP searches for each of the four proposed vec-
tors. “Crash” indicates that the research has not stopped before 30 CRs (cycling)
or that the number of force calculations is greater than 4000. The numbers in the
plot indicate how many new connected SPs have been found due to the increase
in CRs crossed. Note that the 23 direct SPs are found in all simulation sets since
VCR modifies only the treatment of indirect ones, with pathways that go through a
CR.

Fig. 6, these SPs are reached, for the most part, either directly, with-
out crossing a CR, or quasi-directly, crossing no more than 2–3
convex regions.

When following only the eigenvector VCR = Vmin, the number
of different saddle points found is about half that of the other
proposed vectors, regardless of the number of CRs crossed, as shown
by the numbers at the top of Fig. 6. Most of them are not localized
on the five atoms of interest: those that have been moved by Vrinit to
escape the starting CR.

The second remarkable effect of pushing through a CR is that
ARTn almost always finds a saddle point, drastically increasing its
efficiency. As presented in Fig. 5(a), the ratio of explorations that
lead to a direct saddle point does not exceed 25%. With the opti-
mal VCR, except for some cases described in Sec. VI B, 100% of the
explorations lead to an SP. Furthermore, 75% of the SPs found do
not need to cross more than 3 CRs. For the other 25%, it is hard to
precisely affirm that all the CRs encountered are really separated:
it is possible, for example, that the algorithm revisits previously
encountered large CRs.

Interestingly, VCR = Vrnew results in a larger number of path-
ways crossing more than 10 CRs (blue bare shown in Fig. 6): the
fully random direction used here sometimes pushes the system
toward the initial minimum. This implies that a subsequent push
outside the CR (Vpush = Vmin)will most likely bring the system back
into the same CR, thus increasing the number of encountered CRs
without helping the algorithm find SPs. This shows the importance
of preserving a part of Vrinit in VCR.

B. Avoid cycling
In some rare cases, which represent less than 1%–3% of the

search directions, the eigenvalue alternates between positive and
negative a large number of times. As shown in Fig. 6 (column Crash),
this cycling behavior is only observed when using VCR = Vrinit.

FIG. 7. Cycling behavior observed in 1%–3% of the ARTn explorations with
VCR = Vrinit. The gray and black dots are the older and last intermediate structures,
respectively. The blue arrow is Vrinit. 7(a): The red arrows indicate the chronologi-
cal order of the intermediate structures. Top: global view of the algorithm. Bottom:
Zoom around the region where the algorithm is trapped. The green area is the
approximate CR. 7(b): The green, cyan, and pink arrows show the cycle occurring
using the VCR = Vrinit each time it enters the CR. The direction between two black
points in CR and that of VCR are not the same due to the perpendicular relaxation
after each push.

Looking into the atomic structures visited with ARTn, we see that
after some standard steps, the algorithm becomes trapped in a loop-
ing pattern on the PES, which forces the structure to escape and
relax back into the same CR(s) indefinitely. This cycling behav-
ior is presented in Fig. 7, where the loop is composed of one CR
(green area), but loops composed of up to three different CRs have
been observed. A video of the cycling behavior on the 2D PES is
available in the supplementary material. Applying a double random
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vector VCR = (1 − α)Vrinit + αVrnew avoids this problem since the
random part added to Vrinit each time a CR is detected ensures
that the escape direction is never repeated, so infinite cycling is
prevented.

C. Unconnected paths
The ratio of SPs connected to the initial minimum to the total

number of SPs generated is ∼90% in all cases (see the top table in
Fig. 5). This particularly good score depends on the PES and the
set of ARTn parameters, mainly the maximum size of the displace-
ments. However, the ratio of unconnected to the total number of
SPs increases with the number of crossed CRs (see Fig. 6). The
unconnected SPs are reached because a boundary of the basin has
been crossed, probably due to a too large push step while emerg-
ing from a CR, in which the step size is fixed. Disconnected SPs
are also more frequent with VCR = Vmin: in physical systems, Vmin
inside the CRs generally corresponds to a highly delocalized mode,
such as quasi-acoustic modes. Following that direction then induces
highly delocalized displacements, favoring disconnection with the
basin. Note that leaving the basin is obviously a mandatory condi-
tion to reach an unconnected SP, but is not sufficient. In fact, the
regions attracted by the connected SP pass over the basin’s bound-
aries [see the difference between Figs. 1(a) and 1(b)], thus connected
SPs can be reached from outside the basin. The sufficient condition
is to pass over the regions attracted by the connected SPs, which are
a priori unknown.

D. Optimization of the mixing parameter
The best mixing parameter to define VCR is obviously PES-

dependent. As shown in Fig. 8 for the system studied here, while
a very low α leads to a lower number of SPs reached and a lower
fraction of SPs connected to the initial minimum, 0.25 ≤ α ≤ 0.4 gen-
erates the highest number of different but connected SPs, a solid
measure of sampling quality. As α increases, the number of lost SPs
falls to zero at the cost of a slight decrease (15%) in the number of
different connected SPs.

The results shown in Fig. 8 confirm that each Vrinit represents
the overall correct direction to follow, and the random part serves

FIG. 8. Count of the number of SP reached using different VCR in the convex
region.

mostly to avoid cycles and provide access to the merging valleys that
have turned toward a direction drastically different from Vrinit.

VII. IMPROVING THE EFFICIENCY OF THE METHOD
Several additional improvements to ARTn are possible, as

discussed in the section.

A. Detecting the basin boundaries
An unconnected SP is reached when one of the hyperplanes

that binds the basin is crossed during the SP search. Looking at
the regions around the SPs shown in Fig. 1(d), these boundaries
correspond to the hyperplanes orthogonal to Vmin. Crossing them
requires the system to be close enough to one of those and to
undergo a sufficient push along Vmin to go over those. However, in
the “minimum mode following” algorithms, the norm of the push
along Vmin is proportional to the parallel force F∥, which is reduced
the closer the system gets to an orthogonal hyperplane (where
F∥ = 0). At a hyperplane, the algorithm only performs orthogo-
nal relaxations down to the SP (as the size of the push across the
hyperplane is zero due to the force parallel to Vmin being zero).
The hyperplanes orthogonal to Vmin, therefore, act as uncrossable
barriers. On the contrary, it is possible to observe in Fig. 1(d) that
far from the SPs, the basin is not bounded everywhere by the hyper-
planes orthogonal to Vmin. There are paths in which the algorithm
can potentially leave the initial minimum attractor. This behavior
can typically occur when the size of the orthogonal relaxation steps
or of the pushes along Vmin are too large. To avoid crossing these
boundaries, a simple solution is to reduce the maximum size of the
displacements, but this is at the price of a higher computational
cost for all the other explorations. Therefore, one of the possi-
ble improvements should be a detection of the minimum attractor
boundaries. This detection should automatically reduce the size of
the push and put the algorithm back to its previous position on the
PES, which allows the use of step sizes that do not limit the other
explorations.

B. Smooth switching of push vector
One of the previously implemented improvements of ARTn

consisted of a way to smoothly change the direction of the push
from the random initial Vrinit to the eigenvector Vmin in a series of a
few steps, when escaping the starting basin.6 The initial goal of this
option was to avoid driving the system back into the starting basin at
the first perpendicular relaxation step above the inflection. However,
we have observed that applying the smoothing option whenever
exiting any CR helps push the system sufficiently far away from the
CR, before recommencing the regular algorithm, i.e., following the
minimum eigenmode. Therefore, it represents an excellent option
to help navigate the system away from the CR that has just been
crossed. Unfortunately, performing the smoothing in too many steps
can increase the number of unconnected saddle points. Typically,
this occurs when a boundary of the basin is close enough to the
crossed CR, such that this boundary can be crossed by a smoothed
push vector that has a constant size. Therefore, to use the smoothing
option to its full potential, it is recommended to limit the smooth-
ing procedure to a single step when leaving the CR, i.e., to perform a
single intermediate step with Vpush = VCR/2 +Vmin/2.
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C. Choice of Vrinit amplitude
There are two strategies to escape the starting CR in a ran-

dom direction: (i) Progressively push the system along Vrinit using
small amplitudes up to the inflection hyperplane; each push fol-
lowed by a few perpendicular relaxation steps to reduce the forces
and avoid atomic collisions. (ii) Drastically push the system along
Vrinit with a large amplitude with the expectation to immediately
step over the first inflection hyperplane surrounding the minimum.
The step amplitude can also be randomized with a Gaussian distri-
bution in order to make some bigger deformations, which hopefully
bring the system beyond the places where the valleys are “created”
(valley branchings). Even if this second strategy requires fewer force
evaluations to escape the starting CR, it has three main problems:
(i) The step size and its standard deviation must be defined by
the user, requiring a priori knowledge of the PES. (ii) Steps that
are too large can lead to unconnected paths or miss SPs close
to the starting minimum. (iii) Not doing intermediate relaxations
can lead to non-physical configurations, for which the forces are
abnormally high. Although the second strategy can be applied in
ARTn with appropriate preprocessing, the first is recommended.
This discussion concerning the amplitude of Vrinit in the starting
CR can be generalized to the amplitude of VCR used to escape the
other CR.

D. Choice of Vrinit direction
For activated processes in solid-state systems, connected SPs

are generally localized in a region of the configuration space in which
a small number of atoms (a dozen or so) are displaced from the ini-
tial minimum: the ones for which the chemical bond is broken or
created and their neighbors. Therefore, the optimal initial random
deformation Vrinit consists of moving one atom of interest and its
nearest neighbors (up to the first or second shell) in a random direc-
tion. When too many atoms are displaced, multiple disconnected
valleys can arise, representing competing activated mechanisms.
This can result in an oversampling of a small set of SPs, the ones
that are the easiest to reach, i.e., that have the largest attracted region
or in the generation of unconnected SPs, as the Hessian spectrum
becomes denser, resulting in disconnected pathways. An example of
such a disconnected pathway would be a simultaneous diffusion of
atoms at two different locations in the material.

It is formally possible to fully sample the PES around a basin
by systemically choosing deformation directions from a set of
equidistant points on the hypersphere of possible deformations, as
performed by a pre-processing routine of the dimer code.33

Although this results in a faster sampling of SPs in low dimensions
(see the adaptative_HSphere results on the OptBench saddle search
benchmark test34), this approach becomes unmanageable in higher
dimensions, where the number of equidistant points needed to
ensure proper sampling becomes prohibitively large.

VIII. CONCLUSION
The identification of saddle points on potential energy surfaces

(PES) is crucial for the characterization of the kinetics of chemical
reactions and of the evolution of materials. Over the past 50 years,
multiple algorithms have been developed to find these saddle points,
based on a relatively simplistic view of the features of PES. Building

on a 2D model, we show that these methods underestimated the
importance of convex regions (CR) standing between the local min-
imum and the connected saddle point, greatly reducing their ability
to find saddle points of the PES. This causes a general under-
sampling of connected saddle points, while increasing the overall
computational costs of the open-ended methods.

The much-improved understanding of the PES features leads
us to explore various solutions to reach the different valleys beyond
the convex regions applying ARTn to an amorphous silicon model.
Pushing the system through a CR along a modified direction, given
by the double random vector Vrinit +Vrnew, we show that (i) we can
identify up to 10 times more unique connected saddle points than
with the standard ARTn, while (ii) reducing the proportion of failed
explorations to well below one percent.

These results are of critical importance for the characterization
of the PES for complex materials and the use of open-ended meth-
ods, such as ARTn within kinetic algorithms.35,36 Further work will
focus on these directions.

SUPPLEMENTARY MATERIALS

Supplementary material is available for this article. There are
two mp4 video files, one gnuplot script, and one pdf with detailed
description of each.
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It can be plugged into force engines using empirical potentials
(LAMMPS29) and density functional theory (presently Quantum
Espresso,38 soon Siesta,39 VASP40 and abinit41). The input data used
in the amorphous silicon study is available in the examples directory
of the pARTn GitLab repository.

APPENDIX A: EXAMPLE OF SADDLE POINTS
REACHED BY CROSSING SEVERAL CONVEX REGIONS

It has been shown in Fig. 6 that the number of CRs that need
to be crossed to reach an SP can be particularly high. Here, we show
that this observation is also found in lower dimensions, namely, on
a 2D toy-model PES with the same analytical function as in Sec. III,
albeit in a different region. It is shown in Fig. 9, where the VtoPH are
all inside some CR, and additionally, the CR contain three forbidden
crossings. The first forbidden crossing makes the SP marked in white
unreachable without adding a random part to VCR.

APPENDIX B: EXAMPLE OF VALLEYS BRANCHING
WITHOUT FORBIDDEN CROSSING

Branching/bifurcation usually occurs far from the initial mini-
mum, where the structural symmetries (symmetries of the PES) are
generally broken. This means that the lowest eigenvalue is generally

FIG. 9. Same PES and colors as shown in Figs. 1 and 3, but the region between
x ∈ [17.1; 20.2] and y ∈ [25.25; 28.45]. Two CRs need to be crossed to reach
the magenta SP from the minimum.

not degenerate and, consequently, that there is only one single eigen-
vector Vmin. This idea becomes obviously false in highly symmetric
systems since the lowest eigenvalue in that case is degenerate, and
thus, multiple eigenvectors Vmin exist. If the PES keeps its symmetry
out of the minima, which is typically the case during the diffusion
of atoms in crystalline systems, then the valleys are mathematically
allowed to cross each other at a single point.

An example of a symmetric case is shown in Fig. 10, which rep-
resents the diffusion of a substitutional Cu atom in a 128 atom bulk
aluminum simulation box. SPs have been found using ARTn in its
plugin version with Quantum Espresso V7.3.38 The total energy and
forces have been calculated within the density functional theory in
the local density approximation, using pseudo-potentials and a plane
waves approach. The Brillouin zone is sampled at the zone center
only, and a 37 Ry cutoff energy is used to restrict the number of plane
waves summed to form the wave functions. This example has been
chosen because one of the valleys [the pink balls shown in Fig. 10(a)]
coming from the starting minimum is suddenly split into four differ-
ent valleys at the branching point [Fig. 10(b)], each of them leading
to a different saddle point [only one is shown in Fig. 10(c)].

Interestingly, the lowest eigenvalue at the branching point
[Fig. 10(b)] is still negative, as the valley branching does not neces-
sarily induce a convex region. This means that this point cannot be
detected by a change of inflection but only by a symmetry analysis.
In this case, the symmetry is a rotation of order 4 around the axis
defined by the starting valley. This symmetry induces the degener-
acy of lowest eigenvalues at the branching point and that any linear
combination of their eigenvector is an eigenvector. Hopefully, when
one eigenvector Vmin has been chosen by the Lanczos algorithm and
the system has been pushed along it, the system is no longer at the
branching point, the PES symmetries are broken, and the lowest
eigenvalue is then uniquely defined.

However, during a PES exploration, a problem occurs when
the system reaches such single point branchings. In fact, after the

FIG. 10. Diffusion of a substitutional Cu atom (red ball) in cubic aluminum (blue
balls) by using a pushing mechanism. The small pink balls represent the positions
of the Cu atom in the valleys linking the starting minimum to the 4 saddle points.
10(a): The starting Cu position is a substitutional site. 10(c): Only one saddle point
is represented. At the branching point [Fig. 10(b)], which is not a saddle point,
the lowest eigenvalue is negative and four times degenerate. The top and bottom
panels represent the same structure from two different points of view.
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push along an eigenvector during the orthogonal relaxation step,
the system can potentially fall down into one of the three other
surrounding valleys or around the branching point where the eigen-
vectors are still quite degenerate. Hence, at the next Lanczos step,
the eigenvector Vmin will be modified to be in another valley.
This eigenvector modification will occur again and again at each
perpendicular relaxation, such that the system will oscillate around
the branching point by constantly changing the valley it follows.
This does not occur when the branching is a forbidden crossing
because the valleys are far enough from each other, and the perpen-
dicular relaxation cannot be large enough to permit the system to
change the valley. To avoid this phenomenon, a simple solution is to
drastically reduce the number of orthogonal relaxation iterations
that are performed after the first few pushes following the detection
of a symmetric point. With this method, the orthogonal relaxation
becomes efficient only when the system is far enough from the
branching point. Another solution is to increase the size of the push
along Vmin when symmetry is detected, with the risk of crossing the
basin boundaries.
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